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SUMMARY 

Heart failure, predominately caused by myocardial infarction (MI), is the leading cause of 

death in the United States [1]. During MI, the occlusion of a coronary artery results in a 

loss of contractile cells and formation of scar tissue in the myocardium.  Changes in 

tissue structure induce altered mechanical loads that lead to chronic remodeling and 

progression to heart failure.  Currently, the only treatment for heart failure is cardiac 

transplantation, but studies show that progenitor cell, biomaterial, or combined therapies 

have improved cardiac function post-MI. While cell therapy studies show promise at a 

clinical level, the mechanism through which benefits are achieved is unclear [2]. A 

thorough understanding of cardiac progenitor cell interactions with their 

microenvironments is necessary to understand how cellular and biomaterial treatments 

could synergistically improve cardiovascular therapy.  This dissertation aims to fill this 

mechanistic gap created by ongoing clinical studies through evaluating the interaction of 

cardiac progenitor cells (CPCs) with their microenvironment, specifically through the 

application of extracellular matrix proteins or mechanical strain. 

 

The endogenous environment of CPCs is drastically different than commonly used 

culture conditions.  Further the endogenous environment changes with disease state.  We 

evaluated the behavior of CPCs cultured on a naturally-derived, cardiac extracellular 

matrix (cECM) as compared to the standard culture coating collagen I, which also mimics 

fibrotic tissue.  In this study, CPCs cultured on cECM had improved cell numbers and 

cardiomyogenic maturation. 
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The microenvironmental cues responsible for stimulating CPC activation are largely 

unknown.  During development, aging and disease the myocardium changes in matrix 

composition and stiffness exposing endogenous cells to a wide variety of stimuli.  In a 

combinatorial study, we evaluate the effect of cyclic strain and extracellular matrix 

composition on CPC behavior.  The response of CPCs to signals from the 

microenvironment is complex, with more matrix-dependency observed at lower strains.  

Alignment, cell division and paracrine signaling are extracellular matrix and strain 

dependent.  Extracellular matrix conditions affect CPC maturation and calcium signaling. 

Mechanotransduction pathways, including focal adhesion kinase are activated through 

adhesion and maintained under cyclic strain. 

 

This dissertation addresses the interaction between CPCs and extracellular matrix 

proteins, including cECM, as well as the interaction between CPCs and cyclic strain. The 

impact of this work is significant because it will build a basic scientific understanding of 

CPC interactions with the microenvironment.  These insights will advance pragmatic cell 

therapy attempts to regenerate healthy myocardium post-MI. 
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CHAPTER 1  INTRODUCTION  

Coronary artery disease accounts for half of all cardiovascular disease, greatly 

contributing to the number one cause of death in the United States [1].  Advances in 

surgical techniques, pharmacological agents and an understanding of risk factors have 

reduced the mortality of cardiovascular disease over the last several decades [3].  

However, the majority of current therapies are palliative and while slowing the 

progression of heart failure, are unable to regenerate tissue after an injury such as 

myocardial infarction (MI).  To fill this need, the fields of cell therapy and tissue 

engineering have grown exponentially of late.   

1.1 Motivation 

Annually there are over 1 million estimated cases of MI, with the estimated direct and 

indirect costs of the disease totaling $315 billion dollars [1].  A myocardial infarction 

begins with the occlusion of a coronary artery, preventing blood flow to the serviced 

region of myocardium.  The hypoxic environment leads to a loss of myocytes, further 

triggering an immune response.  Fibroblasts are recruited to the injury site and deposit 

extracellular matrix leading to the formation of a non-contractile scar.  As the heart 

adjusts to changes in its altered mechanical load it undergoes maladaptive chronic 

remodeling leading to decreased function and heart failure.  In a clinical setting, coronary 

angioplasty restores blood flow to the myocardium, acutely resulting in the production of 

reactive oxygen species and additional damage. 

 

Cell therapy shows great promise in regenerating injured tissues.  Several clinical trials 

are underway to evaluate the safety and efficacy of these therapies after MI.  SCIPIO and 

CADUCEUS have both demonstrated safety with functional improvements seen in 

patients with more severe heart failure [4].  One of the greatest challenges of cell therapy 

is adequate retention and survival of implanted cells [2].  Combination therapies of cells 
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delivered in a biomaterial vehicle are being used to improve cell retention.  Biomaterials 

may also serve to provide implanted cells with a controlled microenvironment, shielding 

them from the harsh condition of the diseased myocardium.  Currently, a number of cell 

types have been evaluated in combination with several biomaterials for cell therapy.  In 

many cases though, these studies lack a thorough understanding of how the cell behavior 

is tied to their microenvironment.  Evaluating and understanding how specific 

microenvironmental cues affect cell behavior will allow for pragmatic design of cell 

therapy studies. 
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CHAPTER 2  SPECIFIC AIMS AND HYPOTHESES 

The central hypothesis of this dissertation is that cardiac progenitor cells (CPCs) sense 

their microenvironment and that providing CPCs with the appropriate 

microenvironmental cues will improve their potential to regenerate healthy myocardium 

through proliferation, cardiogenic differentiation, paracrine signaling and connectivity.  

The microenvironment consists of many complex signals including biochemical (i.e. 

extracellular matrix composition) and biomechanical (i.e. tensile strain) cues.  Moreover, 

endogenous microenvironments are spatially and temporally distinct.  This dissertation 

focuses on understanding the relationship between microenvironmental cues and CPC 

behavior. 

  

Aim 1: Evaluate the effect of cECM on CPC behavior.
1
   

We hypothesize that a complex, naturally-derived exctracellular microenvironment 

(cECM) would improve CPC culture over standard collagen I.   CPCs were isolated from 

adult, male Sprague-Dawley rats and cultured on cECM or collagen I (COL) at 1 mg/mL 

for 2 – 7 days.  Following culture, CPCs were harvested for qPCR, Western, Annexin V 

and Coulter Counting to assess maturation, survival and proliferation. Additionally, a 

microfluidic experiment was performed to determine CPC adhesion to each substrate. We 

found that CPC behavior was improved by culture on cECM as compared to collagen I.  

Aim 2:  Assess the matrix composition dependency of mechanical loading on CPCs.  

We hypothesize that CPCs would respond to cyclic strain and that the response would be 

specific to matrix culture conditions.  Bioflex plates were functionalized with poly-L-

                                                 

 

 

1
 French KM et al. A naturally derived cardiac extracellular matrix enhances cardiac progenitor cell 

behavior in vitro. Acta Biomaterialia. 2012; 8(12): 4357-64. 
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lysine, laminin, fibronectin, collagen I or cECM at 10 ug/cm
2
 before seeding with CPCs.  

The plates were then exposed to 0%, 5%, 10% or 15% strain for 24 hours on a Flexcell 

5000.  The effects of strain and matrix coating on CPC behavior were evaluated by 

immunofluorescence, qPCR, Western, calcium oscillations and ELISA to assess 

alignment, differentiation, proliferation and paracrine signaling.  Further, effective strain 

transfer and biochemical pathways were evaluated for mechanistic insight.  CPCs 

respond to biochemical and biomechanical cues in a complex manner. 
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CHAPTER 3  LITERATURE REVIEW 

3.1 Myocardial Infarction 

3.1.1 Prevalence of Myocardial Infarction 

Cardiovascular disease is responsible for more deaths in the United States than any other 

cause, accounting for almost one-third of all deaths [1].  Every 40 seconds there is a death 

contributed to cardiovascular disease.  Coronary heart disease, including myocardial 

infarction (MI), contributes to 50% of all cardiovascular disease.  MI has a current 

prevalence of 7.6 million people, with 620,000 new, 295,000 recurrent and a predicted 

150,000 silent MIs annually.  Thanks to an improved understanding of risk factors and 

therapeutic intervention, the death rate of all cardiovascular disease has decreased 31% 

since 2000.  This had led to a 28% increase in the number of inpatient procedures 

performed and an increase in the prevalence of heart failure, currently at 5.1 million.  

Heart transplantation is ultimately the only cure for heart failure, with the number of 

available donor hearts far insufficient for the number of patients.  Currently, fewer than 

3,000 heart transplantations are performed annually.  This equates to less than 1% of all 

heart failure patients.  In 2010, the total direct and indirect cost of all cardiovascular 

disease was $315 billion, one-and-a-half times greater than the total estimated costs of all 

cancer combined.  This places a burden on the health care system, with the predicted 

costs to reach one trillion dollars in the next 15 years [1]. 

3.1.2 Myocardial Infarction Progression 

This section will describe the disease progression following a myocardial infarction (MI), 

with a specific focus on remodeling of the extracellular matrix and altered mechanics of 

the myocardium.  An MI is initiated by the occlusion of a coronary artery.  Within 

minutes of this event, myocytes loss begins through necrosis, programmed apoptosis and 

autophagy, with myocytes loss spanning the thickness of the myocardium within hours 
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[5, 6].  It is estimated that 1.7 x10
9
 myocytes are lost in a severe infarct of the human left 

ventricle [7-9].  While there is some evidence of mitotic cardiomyocytes after MI, the 

degree of myocyte turnover is debated and ultimately, division of existing myocytes is 

insufficient to restore the myocardium [7].  Within 12 hours, the biochemical changes to 

surviving cells in the myocardium are irreversible [5].  Biochemical signaling events 

initiated by release of intracellular proteins from dying myocytes trigger an immune 

response in the myocardium [6].  In large mammals, this is identified as cytokine 

signaling induction and leukocyte infiltration beginning within an hour of infarct and 

lasting several days [10]. 

 

Loss of myocardium function is evident within minutes of the occlusion [9].  This loss of 

function leads to a reduced stroke volume and increased end diastolic pressure of the left 

ventricle.  Cardiomyocycte slippage contributes to acute wall thinning [9].  To 

compensate for this remodeling, the end diastolic volume of the myocardium increases, 

but this adaptation is only successful for small infarcts [11].  In more severe infarcts, 

eccentric hypertrophy is induced in the infarct region resulting in further dilation of the 

ventricle.  Infarct tissue is softest 4-7 days post-MI, leading to the greatest likelihood of 

ventricular rupture [5].  This is followed by fibrotic tissue deposition [10].  If chamber 

dilation is uncompensated by an increase in wall thickness, there is a decrease in wall 

motion indicating further loss of function.  As the surviving myocardium must bear the 

mechanical load, this remodeling also results in an increase in wall tension, leading to 

concentric hypertrophy of remote regions of the myocardium [9, 11].  Increased wall 

tension can lead to a 70% increase in cardiomyocyte size through hypertrophy [8, 12].  

However, myocyte hypertrophy, while increasing the mass of viable myocardium, is 

insufficient to functionally compensate for myocyte loss [13].  Additionally, scar tissue 

continues to develop through further matrix deposition and crosslinking over 2-3 months 

[5, 10].  This fibrosis contributes to contractile dysfunction and arrhythmia [6].  Acute 
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left ventricular remodeling including infarct expansion, i.e. the thinning and lengthening 

of scar tissue, and ventricle dilation are observed within several weeks of the initial 

coronary event.  Chronic remodeling which is largely observed as chamber dilation 

occurs over several months to a year [8, 11].  The degree of functional loss and 

myocardial remodeling is proportional to the degree of injury after MI [9].  Further the 

degree of fibrosis correlates with morbidity and mortality due to arrhythmias and sudden 

cardiac death [6]. 

 

Additional changes are observed in the myocardium post-MI.  In the remote and border 

zones, capillaries increase in diameter in order to maintain capillary volume after a 

decrease in capillary number [13].  Neurohumoral factors, i.e atrial natriuretic peptide, 

angiotensin II, and transforming growth factor beta, are released and further contribute to 

remodeling [11, 12].  Additionally pathophysiological loading of cardiomyocytes leads to 

increased production of reactive oxygen species [14].  Biochemical changes in 

cardiomyocytes may also contribute to loss of contractility.  Decrease in the calcium 

handling proteins sarcoendoplasmic reticulum calcium transport ATPase, ryanodine 

receptor and L-type calcium channels, with an increase in inositol trisphosphate receptor 

and sodium calcium exchanger, result in a shift to a less mature phenotype [8].  Myocyte 

coupling may also be reduced by shifts in connexin 43 expression to the predominantly 

atrial connexin 40 [8].  The remainder of this work will focus on changes in extracellular 

matrix composition and biomechanical signaling in the myocardium.   

3.1.2.1 Extracellular Matrix Remodeling 

Ventricular remodeling was originally defined as global changes in the size and shape of 

the ventricle [11].  While this remains true from an organ-level perspective, remodeling 

also occurs at a sub-tissue level with changes in the extracellular matrix (ECM), cells and 
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local mechanical properties.  As the myocardium is heterogeneous, the changes discussed 

here are likely to be region specific. 

 

Initially after MI in the rat, increased expression and activity of cathepsins, matrix 

metalloproteinases and tissue inhbitors of matrix metalloproteinases induces early 

changes in matrix remodeling [15].  There is an initial decrease in collagen content and 

organization [8].  The controlled degradation of ECM leads to cardiomyocyte slippage 

and reduced stiffness of the myocardium.  This process also generates ECM fragments 

that act as signaling moieties, contributing to the immune response and directing 

differentiation of fibroblast into myofibroblasts [8, 10].  Fibroblasts and myofibroblasts 

are largely responsible for matrix deposition in the myocardium [6, 16].  The ECM is 

responsible for surrounding cells to organize and orient them, provide mechanical 

support, allow for transfer of mechanical forces and to protect cells from over-stretching 

[8, 15].  In the healthy myocardium, cECM is composed of collagen I, collagen III, 

fibronectin, laminin, collagen IV, elastin and proteoglycans [8].  Under physiological 

conditions collagen turnover in the myocardium is 5-9%, greater than in other tissues [17, 

18].  In adults, 85% of collagen in the heart is collagen I, thick fibers providing strength, 

and 11% is collagen III, thin resilient fibers [19].  Post-MI, fibronectin is the first matrix 

protein to be deposited [12, 20].  This is followed by pathophysiologic collagen turnover 

in the myocardium, which can be as high as 50% [18].  Full scar formation includes the 

accumulation of fibronectin and collagens I and III, with an increase in the ratio of 

collagen I to collagen III content [8, 19, 21].  In remote regions of the myocardium, 

reactive fibrosis occurs in response to increased wall stress.  An increase in thin collagen 

fibers decreases the compliances of the remote myocardium and limits oxygen diffusion 

[6]. 
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In addition to changes in ECM content post-MI the organization of ECM components is 

also altered [16].  Collagen fibers post-MI, due to changes in mechanical loading, tend to 

be larger in diameter and are more crosslinked [6, 8, 12, 22].  Assembly and organization 

of collagen fibrils is likely influenced by matricellular proteins such as secreted protein 

acidic and rich in cysteine.  Secreted protein acidic and rich in cysteine (SPARC) levels 

are highest in development and after injury, tracking with collagen expression and 

SPARC null mice have fewer collagen fibrils [23].  Additionally, an increase in 

proteoglycans and glycoproteins, such as tenascin-C, osteopontin and hyaluronan, is 

observed post-MI [21, 24, 25].  Proteoglycans are less studied in the myocardium and 

regulated by their own processes.  However, they may play a role in regulating folding, 

organization, degradation and activity of structural ECM components and have been 

shown to influence the outcome in cardiac disease studies [25].  Cells are reactive to 

changes ECM remodeling as demonstrated by a global increase in integrin alpha1, alpha3 

and alpha5 subunits post-MI [20]. 

3.1.2.2 Altered Biomechanics 

It is difficult to measure local forces in the myocardial wall in vivo.  Therefore, 

biomechanics of the myocardium are typically discusses as tissue stress or strain 

measurements.  These parameters are also dependent on location within the myocardium 

and active stress changes through the cardiac cycle.  Rodent models are used for more 

invasive studies and will differ from human tissue.   In rats, the elastic modulus of a 

healthy left ventricle is 18 kPa.  This increases to 55 kPa post-MI [26].  Similar results 

were obtained in mice, but with further stiffening over time to 90 kPa in the infarct region 

[27].  Maximal in vivo active stresses for the healthy myocardium are 70-110 kPa in a 

canine model and 180 in humans during the cardiac cycle [28, 29].  In patients with 

pressure overload, the active wall stress doubles [29].  One study in decellularized murine 

myocardium evaluated local mechanical properties by atomic force microscopy.  Andreu 
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et al. demonstrated that healthy myocardium is mechanically heterogeneous.  Infarcted 

myocardium, while three-fold stiffer still displayed heterogeneity [30].   Interestingly, 

this study also demonstrated that ECM experiences stresses about 4-fold higher than 

stresses on cells, suggesting that ECM bears the load in the heart.  Cells would 

experience higher stresses at the cell-ECM interface than internally [30].  Global strain in 

healthy myocardium of humans is 18% as demonstrated by echocardiography [31, 32].  

This decreases to 7% post-MI [31].  Strain of the myocardium is also inversely 

proportional to wall motion score and decreases with cardiac dysfunction [32]. 

3.1.3 Current Therapies for Myocardial Infarction 

Aside from heart transplantation a number of palliative therapies are available for MI 

treatment.  These therapies come in the form of surgical intervention, pharmacological 

agents and mechanical support from a left ventricular assist device.  Surgical 

intervention, such as coronary angioplasty and the placement of a stent, restore blood 

flow to the damaged myocardium [12].   Thrombolytics are also used to remove arterial 

occlusions.  Early reperfusion is considered one of the most important interventions to 

prevent infarct expansion and negative myocardial remodeling [11].   Pharmacological 

agents include angiotensin-converting-enzyme inhibitors, angiotensin receptor blockers 

and beta-adrenergic blockers.  Each of these has been shown to reduce mortality in 

clinical trials [3].  Angiotensin-converting-enzyme inhibitors and angiotensin receptor 

blockers target angiotensin II signaling, while the mechanisms of action for beta-

adrenergic blockers are not fully understood.  When given early, angiotensin-converting-

enzyme inhibitors, in addition to improved survival, have been shown to improve 

contractility of the heart, as well as stroke volume and ejection fraction.  They may work 

through a combination of mechanisms including peripheral vasodilation, myocyte 

unloading and reduced myocyte hypertrophy [12].  Left ventricular assist devises are 

typically reserved for patients with late-stage heart failure and are considered a bridge to 
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transplantation.  The device aids the heart in its pump function, while also alleviating 

mechanical loads.  Implantation is invasive and success of the device is limited by risks 

of bleeding, infection, thrombosis and mechanical failure.  However they lead to 

increases in patient survival and improve quality of life [3].  In addition to the currently 

available therapies, at least one clinical trial is underway assessing gene therapy for MI 

treatment.  The Calcium Up-regulation by Percutaneous Administration of Gene Therapy 

in Cardiac Disease (CUPID) trial uses an adeno-associated virus to deliver 

sarcoendoplasmic reticulum calcium transport ATPase to the myocardium of heart failure 

patients [6].  As discussed in later sections, the recent growth in the field of regenerative 

medicine has raised hopes for cell therapy post-MI. 

3.1.4 Endogenous Myocardial Regeneration 

As cell therapy attempts are being considered for regeneration of the myocardium, the 

endogenous regenerative capacity of the myocardium is often questioned.  For several 

decades, adult myocytes, and they myocardium as a whole, were considered to be post-

mitotic.  However, since the turn of the century, this notion has been questioned.  

Estimated rates of cardiomyocyte turnover in the normal adult mammalian heart range 

from <0.1% to 40%, with the consensus falling around 1% [33-35].  A large part of this 

discrepancy is due to the methods used to calculate turnover.  Carbon-14 dating shows 

that about half of all human cardiomyocytes are replaced in a lifetime [35].  The field 

generally accepts that this level of regeneration is insufficient to repair a heart after 

infarct and merely supports maintenance due to aging and normal “wear and tear” of the 

myocardium.  There is also unanimity that the regenerative capacity of the myocardium 

declines with age [6, 33-35].  Myocyte regeneration is increased after cardiac injury [7].  

However the source of newly generated myocytes remains somewhat controversial and 

the pool of new cardiomyocytes is likely due to the contributions of circulating 

progenitors, division of existing myocytes and resident stem/progenitor cells [34].  A 
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study transplanted infarcted ventricular tissue into an immunodeficient mouse, 

eliminating the bone marrow as a potential cell source for regeneration, and showed 

induction of c-kit and cardiogenic differentiation within the transplant [36].  In this study, 

c-kit cells from young mice adopted myogenic and vascular fates, whereas only vascular 

fates were induced in older mice.  Unfortunately, endogenous contributions are still 

insufficient to repair the myocardium after significant injury [6, 37].  Evolutionarily, 

resident stem/progenitor cells may not have evolved for rapid tissue regeneration after 

injury [37].  Efforts are being made to better understand stem cell niches and the roles 

they play in homeostasis and repair [38].  For example, microenvironmental stresses such 

as hypoxia, led to activation of endogenous stem/progenitor cells [34].  Further work is 

necessary to determine how to best activate, improve and harness the endogenous 

regenerative capacity of these cells. 

3.1.5 Development of the Myocardium 

Regenerative medicine can take many cues from the studies of developmental biology 

[39].  Toward this end, evaluating the ECM and biomechanics of the young myocardium 

may provide insight into the ideal microenvironments for myocardial regeneration post-

MI.  In animal models, myocardial collagen accumulation begins in the embryo and 

continues after birth.  A study comparing the ECM composition of rat myocardium at 

different developmental ages showed that fibronectin was the most abundant protein in 

fetal and neonatal cardiac ECM, accounting for a fifth of all protein.  Fetal and neonatal 

hearts also contained significant amounts of fibrillin-1, perlecan and collagen I, with 

periostin detected only in fetal ECM [40].  A separate study showed increasing collagen 

I, collagen III and laminin with increasing age of rat myocardium; while fibronectin and 

periostin decreased and collagen IV levels remained unchanged [41].  Fibronectin and 

collagen expression are often observed in parallel, with fibronectin being deposited 

temporally just before collagen, and are more present in development and after injury 
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than in the adult myocardium [42, 43].  Fibronectin plays many roles in development, 

including regulating cell growth, integration, adhesion, cytoskeletal organization and 

morphogenesis [20, 44].  While in a less relevant animal model, drosphilia, laminin has 

also been shown to be essential for heart development [45]. 

 

In addition to a unique ECM composition, biomechanical forces are important during 

development.  Cell tension may contribute to sorting progenitor cells and organizing 

germ layers in the zebrafish embryo and altering fluid forces in the developing 

myocardium has been linked to congenital heart disease [46, 47].  Stiffness of the fetal 

and neonatal rat myocardium is 5-10 kPa, where in the same studies the adult rat 

myocardium was observed to be about double, at 20-25 kPa [41, 48].  By both ultrasound 

and velocity vector imaging, global left ventricular strains in healthy human fetuses are 

17%, with regional variability [49, 50].  This strain matches that observed in the adult 

myocardium as discussed above. 

3.1.6 Cell Therapy for Myocardial Infarction 

Cell therapy for regeneration is the transplantation of an expanded pool of cells into the 

injured host tissue.  Current clinical trials that aim to regenerate the myocardium post-MI 

through cell therapy aim to replace the lost myocytes [34].  A number of cell types have 

been examined for their potential to regenerate the myocardium as reviewed by Mohsin 

et al. and discussed below [37].  Irrespective of cell type, cell therapy remains limited by 

the survival, proliferation and engraftment of transplanted cells.  In addition to cell 

source, the ideal delivery time, method and dosage have yet to be identified.  The 

delivery of cells alone may prove insufficient and many ongoing studies pair a 

biomaterial with cells to improve their successful transplantation and regeneration of host 

tissue. 
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Skeletal myoblasts were one of the first cell types evaluated for myocardial regeneration.  

The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial while 

unsuccessful was an important step and lesson for cell therapy [51].  The trial was unable 

to show a significant improvement in heart function and increased the risk of arrhythmia 

in patients.  Adult bone marrow-derived stem cells, or mesenchymal stem cells, are the 

most clinically evaluated cell type for myocardial regeneration.  Meta-analysis of these 

trials shows that the therapy is safe and beneficial over standard treatments, with 

decreases in infarct size and end systolic volume and increases in ejection fraction [3].  

Mesenchymal stem cell injection into the infarcted myocardium in animal models and 

clinical trials (i.e. POSEIDON, comparing autologous and allogenic cells) results in 

decreased fibrosis and improvement in certain heart function parameters [26, 52].  Other 

authors point out that these effects are sometimes small and short-lived [37].  The 

mechanism of action surrounding these cells, and all of cell therapy, is debated and 

improvements are attributed to paracrine signaling and increased angiogenesis and not 

reconstitution of the myocardium [2, 53, 54].  Additionally, in a mouse model the 

injection of and unpurified population of mesenchymal stem cells led to calcification in 

the myocardium, underscoring the importance of choosing an optimal cell type [55]. 

 

In addition to mesenchymal stem cells, several other stem/progenitor cell types have 

entered the arena of cell therapy for myocardial regeneration.  Embryonic stem cells are 

able to improve cardiac function post-MI in animal models, but have not yet entered 

clinical trials due to ethical concerns and risks of immune rejection or teratoma formation 

[37, 56, 57].  Induced pluripotent stem cells are also considered to be an unsafe cell type 

at this time due to their potential to form teratomas and risks of somatic coding mutations 

or incomplete reprogramming [37].  Several stem or progenitor cells types endogenous to 

the adult myocardium have been identified, although the distinctions between these 

populations are blurry at this time and many of these populations are likely related or 
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overlapping based on their biological markers [34, 58].  As these populations are 

restricted to the cardiac lineages, they may prove safer than cells of a more pluripotent 

state and are being considered for regeneration of the myocardium.  Cardiac 

stem/progenitor cells that express the receptor c-kit have been identified in mice, rats, 

dogs and humans [59-63] and will be discussed in more detail in Aim I.  Intramyocardial 

injections of these cells have shown improvements in cardiac function after injury [60, 

61, 64].  Cardiospheres have been formed from cells isolated from mice and human 

myocardium [65].  Cells within the cardiospheres express c-kit, hematopoietic progenitor 

cell antigen CD34 and sca-1.  These cells originate from a single clone and are a mixture 

of stem, progenitor and differentiated cells.  Mouse, but not human, cardiospheres beat 

spontaneously [65]. Cardiosphere-derived cells are acquired by plating cardiospheres on 

fibronectin coated dishes [66].  The phase I clinical trial Cardiosphere-derived autologous 

stem cells to Reverse Ventricular Dysfunction (CADUCEUS) reported few adverse 

events, observed a reduction in scar mass and increase in viable myocardium.  However, 

improvements in functional cardiac parameters were not seen [67].  A separate phase I 

clinical trial, Stem Cell Infusion in Patients with Ischemic Cardiomyopathy (SCIPIO), 

evaluated the safety of cell therapy with c-kit positive cardiac progenitor cells.  Left 

ventricular ejection fraction in treated patients increased from 30% before infusion to 

42.5% at one year.  A decrease in infarct size was also observed and no adverse events 

were reported [68].  CADUCEUS and SCIPIO included patients with similar ejection 

fractions, but differed in the average age of infarct, time until delivery of cells and dose 

of cells delivered.  These studies are further reviewed by Xie et al. [3]. 

 

Cell therapy requires removing cells from their native environment, propagating them in 

a laboratory setting and introducing them into a new environment [69].  Injectable 

biomaterials have the potential to be attractive cell delivery vehicles as they can provide a 

suitable microenvironment and can potentially be delivered via minimally invasive 
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catheters [70].  Cellular therapies have been combined with various matrices and 

hydrogels to treat MI and are too numerous to review here [71-77].  Another advantage to 

the combined use of cells and biomaterial is the structural support and unloading 

provided to the myocardium by hydrogels [78].  The major disadvantage of the currently 

used biomaterials for myocardial regeneration is that they lack the complexity and 

specificity of the native myocardial extracellular matrix [79]. 

3.2 Microenvironmental Stimulation 

3.2.1 Biochemical Signals 

An early indication that cell-matrix interaction was cell type specific was the variable 

binding of myocytes of different developmental states to ECM components.  Neonatal 

cardiomycoytes adhere rapidly to fibronectin, laminin and collagen IV.  To a lesser 

degree, neonatal cells also adhere to fibrilar collagens.  This was in contrast to adult 

cardiomyocytes which adhere strongly to laminin and collagen IV, but only weakly to 

fibronectin and not at all to fibrilar collagens [80].  Collagen IV supports culture of 

neonatal rat ventricular myocytes better than laminin over two weeks [81].  These results 

suggest that cells are influenced by their surrounding ECM and that the ideal 

microenvironment of a cell varies with developmental state.   

 

Stem cells in the body exist in niches, a unique environment composed of basement 

membrane proteins and supporting cells that secrete soluble factors and provide cell-cell 

contact [69, 82].  Once activated, these cells migrate from the niches into somatic tissue 

and mature into adult phenotype.  Their microenvironment inside and later outside the 

niche directs their behavior.  Maturation of neonatal rat cardiomyocytes is likely matrix-

dependent, as the degree of spreading varies with matrix protein with the greatest 

spreading observed on fibronectin [83].  Furthermore cardiomyocyte adhesion to 

fibronectin, as compared to collagen I, stimulates higher expression of n-cadherin and 



www.manaraa.com

 17 

connexin 43, suggesting maturation [84].  Culture of embryonic stem cells with laminin 

or collagen I did not induce their differentiation.  However, when cultured with a 

complex, naturally-derived ECM Matrigel the embryonic stem cells adopted a 

mesenchymal stem cell phenotype or formed epithelial-like structures.  These effects 

were ECM specific as decellularized cartilage (Cartrigel) produce cartilage-like nodules 

from embryonic stem cells [85].   In a separate study, collagen IV and laminin were both 

shown to increase the expression of the endothelial marker fetal liver kinase 1 in 

embryonic stem cells, whereas expression of the cardiomyocyte marker alpha myosin 

heavy chain was induced on fibronectin [86].  The differentiation of embryoid bodies 

cultured in a three-dimensional environment, was matrix specific.  Fibronectin induced 

formation of endothelial-like structures, whereas laminin induced spontaneous beating 

[87].  In addition to structural ECM proteins, matricellular proteins regulate cell-ECM 

interaction such as adhesion, signaling, proliferation, migration and survival [88].  

 

While numerous studies evaluate differentiation of stem cells through soluble signals, it 

is beyond the scope of this work, except where those factors interact with the cellular 

microenvironment.  Stem cells release cytokines during differentiation and proliferation.  

These may contribute to distant or neighboring paracrine signaling as well as autocrine 

regulation to increase their maturation [89].  ECM components have growth factor 

binding sites that position soluble growth factors near cells [90].  Laminin and fibronectin 

have known growth factor binding sites [90].  Indeed, in order to stimulate proliferation 

of human vascular endothelial cells co-activation of integrins and vascular endothelial 

growth factor (VEGF) is required [91].  Fibronectin may bind as many as 20 distinct 

growth factors [89].  The binding of growth factors to ECM may be interrupted by 

mechanical strain.  Mechanical strain applied to ECM proteins can also expose cryptic 

binding sites for growth factors or adhesion molecules [90].  It is unclear if the matrix is 

acting as a scaffold to capture soluble growth factors and present them to the cells, or 
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sequestering soluble cells from binding receptors.  This is likely dependent on the matrix 

protein and growth factor combination, increasing the complexity. 

3.2.2 Biophysical Signals 

Cells present in the myocardium experience a range of mechanical forces from the 

binding of individual integrins to their ligands (pN) to the active contraction of the 

myocardium (N) [92-96].  Additionally, physical cues such as extracellular matrix 

organization, topology and stiffness contribute to the biophysical aspects of the 

microenvironment and effect cell behavior.  As discussed below, these signal direct 

differentiation and maturation of stem cells, whereas in adult cells they dictate function.  

In part, these responses are due to altered tension in the plasma membrane and 

cytoskeleton [97].   

 

Myocyte form and function is dependent on substrate stiffness.  On soft (1 kPa) 

substrates, neonatal rat ventricular myocytes (NRVM) have poorly defined striations.  On 

substrates of intermediate stiffness and mimicking the stiffness of healthy myocardium 

(10 kPa), NRVM have nicely defined striations.  On stiffer substrates mimicking infarct 

stiffness (50 kPa) the striations are unaligned and long stress fibers are observed [98].  

Embryonic stem cell-derived cardiomyocytes demonstrate increased spreading and stress 

fiber formation with increasing substrate stiffness.  In addition to cell spreading, substrate 

stiffness also dictated how well the NRVM were able to elongate, with the highest aspect 

ratio observed on substrates of 50 kPa [48].  The number of beating NRVM and the 

contraction force they generate is also dependent on substrate stiffness [48, 99].  

Culturing quail chick embryonic cardiomyocytes at infarct stiffnesses prevented their 

contraction, which was restored at stiffnesses mimicking the healthy myocardium [100].  

Contractility was dependent on cell spreading and myofibril structure.  Furthermore, 

changes in contractility that are modulated by substrate stiffness and nanotopography can 
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direct differentiation of stem cells [89].  However, cells may actually be interpreting 

stiffness as ligand density [101].  In a landmark study, mesenchymal stem cells (MSCs) 

were seeded on collagen-coated polyacrylamide gels of increasing stiffness that 

mimicked various tissues.  When cultured in the appropriate media, lineage commitment 

was stiffness dependent: soft for neurogenesis (<1 kPa), intermediate for myogenesis (13 

kPa) and stiff for osteogenesis (32 kPa) [102].  In following studies, stiffness did not 

affect attachment of embryonic stem cells, but increases from 41 kPa to 3 MPa led to 

increased proliferation and early mesendoderm differentiation [103].  Mouse embryoid 

bodies cultured on tissue-culture polystyrene increased troponin T expression; however 

more beating cells were observed on softer (12 kPa) polydimethylsiloxane substrates 

[104].  The authors also observed that rigidity could control whether stem cells mature 

into atrial or ventricular-like myocytes.  Studies in mesenchymal stem cells demonstrate 

that long-term culture of cells on stiff substrate can lead to irreversible changes [105].  

 

Cell spreading and shape is dependent on substrate stiffness and ligand density.  Cells 

spread more on stiffer substrates and increasing the ligand density on soft substrates is 

insufficient to induce spreading [97].  MSC differentiation can be controlled by 

micropatterning.  Culturing MSCs on small islands, maintaining a rounded phenotype, 

induces adipogenesis.  Conversely, osteogenesis occurs in MSC seeded on larger patterns 

that allowed for spreading.  These results were dependent on changes in cytoskeletal 

structure [106].  More relevant to myogenesis, patterning of surfaces induced durotaxis, 

alignment and fusion of adipose-derived stem cells into myotubes [107].  In a separate 

study, micropatterning induced MSC elongation and alignment, leading to increased 

cardiomyogenic gene expression [108].  Alignment of MSCs is sufficient to induce 

connexin 43 expression, a cardiomyocyte marker [109].  Similar effects were observed 

for NRVM cultured on micropatterned strips.  The cells aligned and elongated dependent 

on strip width.  Alignment induced end-to-end expression of N-cadherin and connexin 43 
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[110].  Additionally, alignment of NRVM alters the expression and activity of their ion 

channels, potentially leading to the functional changes observed on varying substrate 

stiffnesses [111].  

 

In addition to these passive physical signals, the active beating of the heart exposes the 

myocardium to cyclic strain.  All major cardiac cell types elongate and align 

perpendicular to an applied strain [112].  However, the effect of strain varies by cell type, 

the strain regimen (magnitude, frequency and duration) and culture conditions [113].  

Within minutes of applied strain cells begin to remodel their cytoskeleton [114].  

Cytoskeletal stiffness increases proportional to applied stress [115].  After the removal of 

mechanical strain, cytoskeletal tension drops below baseline, with more drastic effects for 

larger strains.  Mechanical strain induces anisotropic increases in cytoskeletal tension in 

the direction of the long axis of the cell [116].  As discussed below, mechanical strain 

regulates proliferation, hypertrophy, differentiation and paracrine signaling in part 

through cytoskeletal changes. 

 

Cyclic mechanical strain of embryonic chick cardiomyocytes induced proliferation, with 

a demonstrated activation of p38MAPK and Akt [117, 118].  Proliferation of non-

cardiomyocytes was not increased.  Strain also increased proliferation of MSCs [119].  In 

this study, MSCs were seeded on micro-patterned surfaces in line with the direction of 

strain, which reduced their reorganization and alignment perpendicular to strain.  This 

suggests that surface topography might be more influential on cell phenotype than tensile 

strain.  In the myocardium strains are anisotropic and biaxial with the primary axis of 

strain in line with cells [120, 121].  This is in contrast to in vitro strain experiments where 

cells tend to align perpendicular to the primary axis of strain.  By aligning NRVM on 

micropatterned surfaces, the effect of strain direction on phenotype is evaluated.  

Transverse strain resulted in loss of striations and expression of hypertrophic factors 
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[122].  This response is typical of adult cardiomyocytes, which increase in size and resort 

to increases in embryonic gene program under stress [123, 124].  Strain also dictates 

calcium dynamics.  In isolated rabbit sinoatrial node cells, stretch increased spontaneous 

beating, potentially through activation of stretch-mediated ion channels [124]. 

 

Straining NRVM lead to a more mature phenotype as demonstrated by increases in 

mechanical junction proteins plakoglobin, desmoplakin and N-cadherin [125].  Strain of 

embryoid bodies resulted in increased angiogenesis or cardiogenesis depending on strain 

magnitude [126].  These effects were mediated by reactive oxygen species, which may 

contribute to changes in cytoskeletal tension and the calcium sensitivity of myofibrils.  In 

MSCs, higher strain magnitudes paired with grooved micropatterns induced smooth 

muscle cell differentiation.  Conversely, at lower strains on flat surfaces osteoblast 

differentiation was induced [119].  Strain induced alignment of human cardiosphere-

derived cells perpendicular to the direction of strain and increased the expression of 

cardiac troponin I [127].  Furthermore, strain induced secretion of vascular endothelial 

growth factor, basic fibroblast growth factor and interleukins -6 and 1b.  No changes in 

insulin-like growth factor, hepatocyte growth factor, stromal cell-derived factor or 

transforming growth factor beta were observed.  Strain of NRVM also induced vascular 

endothelial growth factor secretion [125].  In adult cardiomyocytes, strain induced release 

of transforming growth factor beta, angiotensin II and other factors involved in 

hypertrophy [128, 129].   

 

Our understanding of the role that mechanical forces play in cell proliferation, maturation 

and survival, has led to improved tissue engineering strategies. Mechanical strain was 

applied to tissue engineered grafts constructed of gelfoam and a mixed population of 

human pediatric cardiac cells [130].  Strain doubled the number of cells and improved 

migration of cells into the scaffold.  Increased ECM deposition was also observed.  In 
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addition to the effects that mechanical strain has directly on cells, stretch of a three-

dimensional construct may alter pore size and diffusion through the scaffold.  Similarly, 

mechanical strain was applied to constructs of human embryonic stem cell-derived 

cardiomyocytes on gelatin scaffolds.  Strained constructs showed greater cell elongation 

and cardiac troponin T, L-type calcium channel and connexin 43 expression.  

Implantation of the constructs into a rat heart showed improved cell survival and 

recruitment as compared to static controls [131].  As survival and engraftment of cells 

transplanted to the myocardium is a hurdle, Kurazumi et al. evaluated the effects of 

haemodynamic unloading on stem cell engraftment through a heterotopic cardiac 

transplantation mouse model.  They observed a significant improvement in the survival 

and proliferation of the delivered stem cells [132].  In comparison, 50% of injected cells 

were lost in haemodynamically loaded hearts within three days.  Loading also had an 

effect on differentiation as higher levels of smooth-muscle actin were observed in loaded 

cells as compared to higher levels of sarcomeric alpha actin in cells in unloaded hearts. 

3.2.3 Combined Biochemical and Biophysical Signals 

In the tissue microenvironment, a number of cues are provided simultaneously.  It is 

difficult to distinguish between signals such as stiffness and ligand density, cell shape or 

ligand identity, as they are inextricably linked.  In order to better recapitulate the 

microenvironment and direct cell behavior an increasing number of studies evaluate 

multiple cues simultaneously.  Although this combinatorial approach sacrifices the 

understanding of the effect of specific cues, it is more biomimetic. 

 

To evaluate the combined effect of substrate stiffness and matrix coating, human MSCs 

were grown on substrates with stiffness’s ranging from 25-80 kPa and coated with 

collagen I, collagen IV, fibronectin or laminin.  The cells were more rounded on softer 

substrates and spindly in shape when cultured on laminin.  Proliferation appeared to be 
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dependent only on stiffness, while myoD1 gene expression increased on 25 kPa 

fibronectin gels and 80 kPa collagen gels indicating maturation may require an 

integration of signaling cues [133].  In a similar study, the authors recreated cardiac 

microenvironments with various decellularized cardiac ECMs covalently attached to 

polyacrylamide gels with stiffness to match various stages of the myocardium, 9 kPa 

(fetal), 25 kPa (neonatal and adult), 49 kPa (infarcted adult).  MSC spreading on these 

gels was dependent only on stiffness.  However the traction forces generated by the cells 

were dependent on the stiffness and the developmental stage of the ECM.  Maximal 

traction forces were observed on neonatal and adult ECM at low stiffness and were 

maintained with increasing stiffness.  However, on fetal ECM, MSCs generated higher 

traction forces with increasing stiffness.  Differentiation was also stiffness and ECM 

dependent.  On fetal ECM, increasing substrate stiffness reduced Nkx2.5 expression; 

however Nkx2.5 expression was increased with stiffness on neonatal and adult ECM 

[41].  Cell shape in combination with matrix protein also dictates MSC fate [134].  MSCs 

seeded on small round micropatterns had a tendency to adopt an adipogenic fate 

dependent on the matrix protein present, whereas spread cells always adopted a 

neurogenic fate. 

 

Similar studies have evaluated the application of mechanical force in combination with 

matrix components or soluble factors.  MSC were cultured on collagen I or laminin and 

strained 10%.  While similar degrees of cell spreading were observed for all conditions, 

myogenic gene expression decreased in MSC cultured on collagen.  Secretion of growth 

factors and inflammatory cytokines was also lower on collagen than laminin.  Overall, 

the authors concluded that MSC are more sensitive to matrix than mechanical strain 

[135].  In contrast, smooth muscle cells and cardiac fibroblast exhibit integrin-dependent 

matrix specific effects of static strain [136].  Culture of MSCs on aligned nanofibers 

increased their proliferation more than mechanical loading.  Aligned nanofibers and 
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mechanical loading both induced cell alignment, but MSC differentiation required the 

input of both signals [137].  In addition to matrix composition and mechanical stretch, 

two studies also evaluated the role of soluble factors on MSC differentiation and showed 

interaction between the treatments [138, 139].  Taken together, these studies demonstrate 

the complexity of cell response to signals in the microenvironment. 

3.3 Mechanotransduction 

Mechanotransduction is the activation of a biochemical signaling cascade opposite the 

cell membrane from the occurrence of a mechanical event and the integration of these 

signals into a cellular response. [47, 113, 140-143].  Cells sense nano- and micro-scale 

topographies, geometric cues and stiffness of their environments by pulling on their 

surroundings [113, 144].  In addition to ligand identity, the presentation of extracellular 

signals through spacing, density and stiffness integrate into the signal received by the cell 

[90, 145, 146].  These signals, mediated by attachment and intracellular changes, 

integrate across force and length scales to influence cell behavior such as migration, 

survival, proliferation and differentiation [47, 113, 145, 147, 148].  Initial cellular 

responses to the microenvironment occur within seconds to minutes and increase over 

time through feedback mechanisms [148].  Furthermore, many intracellular signaling 

pathways interact to produce a given functional outcome.  These effects are cell type 

specific and change with developmental state and disease [149].  Complete mechanisms 

of how cells sense their microenvironment remain elusive, but integrins, as discussed 

below, play an important role. 

 

Mechanotransduction is bidirectional and occurs largely through integrins, 

transmembrane heterodimeric proteins composed of an alpha and beta subunit [142, 150].  

Integrins bind specific extracellular matrix proteins, depending on the combination of the 

alpha and beta subunit present [142].  Adult cardiomyocytes express the alpha1, alpha3, 
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alpha5, alpha6, alpha7, alpha9 and alpha10 integrin subunits along with the beta1, beta3 

and beta5 subunits [124, 151].  Integrin expression on cardiomyocytes varies with 

developmental and disease state, but the beta1 subunit is almost ubiquitously expressed 

[152].  Specifically, alpha1 and alpha5 are expressed in embryonic cardiomyocytes, are 

downregulated postnatally and upregulated by mechanical load, mimicking disease [124].  

While integrin heterodimers are known to preferentially bind to a single matrix protein, 

the binding kinetics of integrins and their competition for binding site on ECM may 

contribute to mechanotransduction [149].  Additionally, sub-cellular localization of 

integrins through clustering affects their activity [153]. 

 

The beta1 integrin subunit is one of the most well studied in the myocardium.  The beta1 

integrin contributes to regulation of the cell cycle in cardiomyocytes in development and 

hypertrophy in disease [154, 155].  In NRVM, overexpression of the beta1 integrin 

increased cell size and markers of hypertrophy [151, 156].  The effects were reduced in 

cells that overexpressed the free cytoplasmic domain of the integrin.  In mice, adult 

cardiac knockout of the beta1 integrin did not alter basal function.  However, when the 

mice where challenged with transverse aortic constriction, hypertrophy of myocytes was 

reduced [157].  In a model of development, embryonic stem cells lacking the beta1 

integrin have impaired cardiomyogenic differentiation.  Knockout mice were viable, but 

had defective cardiomyocyte maturation [158].  Additionally, integrins likely play a role 

in the proliferation of cardiosphere-derived stem cells [159].  Rounded cells had lower 

integrin expression, but higher c-kit expression.  This was reversed as the cells spread. 

 

Forces at the cell-ECM interface are heterogeneous as attachment occurs through 

integrins, which cluster in response to mechanical stimuli [47].  This leads to the 

formation of focal adhesions and focal complexes that increase in size with increasing 

mechanical stimuli [128, 144, 145, 160, 161].  Focal adhesions form around the 
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cytoplasmic domain of integrins and are composed of focal adhesion kinase (FAK), talin, 

paxillin, vinculin, Src, and potentially as many as 200 additional proteins [47, 89, 102, 

140, 162].  The role of FAK in mechanotransduction is not fully understood [89].  FAK 

has multiple phosphorylation sites (Y397, Y576, Y577, Y861 and Y925) that contribute 

to its activity when phosphorylated [162, 163].  Binding of FAK to the cytoplasmic 

domain of integrins induces phosphorylation at Y397, potentially through scaffolding 

kinases in the focal adhesion [162].  Activation of FAK can lead to downstream signaling 

through phosphoinositide 3-kinase, mitogen-activated protein kinase, RhoA, Rho-

associated coiled-coil containing protein kinase 1, extracellular signal-regulated kinase, 

and c-Jun N-terminal kinases [98, 162-166].  In addition to signaling cascades that are 

activated by phosphorylation events, mechanotransduction may occur through exposure 

of cryptic peptide sites, conformational changes that alter enzyme activity, altering state 

of ion channels, altered bond strengthening or dissociation of binding partners [89, 148]. 

 

In addition to these traditional views of mechanotransduction, the theory of cellular 

tensegrity considers the cell to be a mechanical unit rather than a biochemical unit [145].  

FAK is tethered to the actin cytoskeleton [145, 162].  This allows for the propagation of 

force from adhesions to the nucleus.  Changes in nuclear shape may alter the 

transcriptional state of chromatin, facilitating transcription [89, 145].  In theory, 

mechanically transmitted signals would propagate faster than diffusion based 

biochemical signals.  However, as mechanotransduction is complex, a cell likely 

integrates biochemically and mechanically transduced signals.  In regards to 

transcription, FAK can translocate from focal adhesions to the nucleus, where it acts as a 

transcription co-regulator with Gata-4 [145].  Additionally, mechanical stretch regulates 

the expression and localization of chromatin remodeling enzymes called tension-induced 

proteins [113]. 
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CHAPTER 4  Naturally-Derived Cardiac Extracellular Matrix 

Enhances Cardiac Progenitor Cell Behavior in Vitro 

Myocardial infarction (MI) produces a collagen scar, altering the local microenvironment 

and impeding cardiac function. Cell therapy is a promising therapeutic option to replace 

the billions of myocytes lost following MI.  Despite early successes, chronic function 

remains impaired and is likely a result of poor cellular retention, proliferation, and 

differentiation/maturation.  While some efforts to deliver cells with scaffolds attempt to 

address these shortcomings, they lack the natural cues required for optimal cell function.  

The goal of this study was to determine whether a naturally-derived cardiac extracellular 

matrix (cECM) could enhance cardiac progenitor cell (CPC) function in vitro.  CPCs 

were isolated via magnetic sorting of c-kit+ cells and were grown on plates coated with 

either cECM or collagen I (COL). Our results show an increase in early cardiomyocyte 

markers on cECM compared to COL, as well as corresponding protein expression later.  

CPCs show stronger serum-induced proliferation on cECM as compared to COL, as well 

as increased resistance to apoptosis following serum-starvation.  Finally, a microfluidic 

adhesion assay demonstrated stronger adhesion of CPCs to cECM compared with COL.  

These data suggest that cECM may be optimal for CPC therapeutic delivery, as well as 

provide potential mechanisms for the shortcomings in naked cell therapy. 

4.1 Introduction 

4.1.1 Cardiac Progenitor Cells 

Cardiac stem/progenitor cells that express the receptor c-kit have been identified in mice, 

rats, dogs and humans [59-63].  Previous work indicates that isolated populations of 

cardiac stem cells, while being >90% positive for c-kit and negative for markers of 

myeloid, lymphoid and erythroid lineages, do not express alpha-sarcomeric actin, cardiac 

myosin, desmin, alpha-cardiac actinin, connexin 43, von Willebrand factor, platelet 
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endothelial cell adhesion molecule, vimentin, alpha-smooth muscle actin and only 7-10% 

express Nkx2.5, Gata-4 or MEF2C [60].  This is distinct from cells isolated and cloned in 

our laboratory, which are >90% positive for c-kit and negative for haematopoetic 

markers, but also express significant levels of Nkx2.5, Gata-4 and platelet endothelial cell 

adhesion molecule [unpublished data and [167]]
2
.  Thus we refer to our cells as cardiac 

progenitor cells (CPCs) instead of cardiac stem cells, but will use the notation CPC 

throughout this work for all c-kit positive cardiac stem/progenitor cells.  Characterization 

of CPCs isolated in our lab are shown in Figure 39.  Regardless of nomenclature, c-kit 

has been shown to be required for the differentiation of CPCs and its dysfunction leads to 

increased proliferation without commitment of the cells [168, 169].  In various adult 

animal models, CPCs have been estimated to exist at a rate of <0.01-0.5% total cardiac 

cells [59, 61, 119].  The number of c-kit positive cells is higher during development, 

increases post-MI, but decreases with aging [59, 62].  These cells can be maintained in 

culture >40 passages [170].  Although lower amounts of clonogenic cells with time 

suggest that might commit to a lineage over long cultures. 

 

These cells reside endogenously in niches in the myocardium [171].  The niches are 

distributed throughout both ventricular and atrial myocardium, but more exist in regions 

of lower wall strain, such as the atria and ventricular apex [60, 64].  While not completely 

characterized, these niches have been shown to contain the matrix components laminin 

and fibronectin [62, 63].  Additionally, further work is needed to identify factors that 

                                                 

 

 

2
 French KM and Davis ME. 2014. Isolation and Expansion of C-Kit-Positive Cardiac Progenitor Cells by 

Magnetic Cell Sorting. In: M Radisic and LD Black (Eds.), Cardiac Tissue Engineering: Methods and 

Protocols (39-50). New York: Springer. 
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activate CPCs to induce migration out of the niche.  It is known that matrix 

metalloproteinases 2 and 9 are required for CPC migration and that they migrate in 

response to hepatocyte growth factor [61, 172].  Furthermore, when treated with 

hepatocyte growth factor or insulin-like growth factor, CPCs respond by releasing more 

of the same growth factors [61].  Insulin-like growth factor positively influences survival 

and proliferation of CPCs [172].  CPCs also interact with their microenvironment through 

integrins.  While the full integrin expression profile has not been investigated, CPCs have 

been shown to express beta1 and alpha4 integrin subunits [63].  In culture, induction 

media or co-culture with cardiomyocytes can induce differentiation of CPCs [59].  

Induction media is more effective for this purpose and leads to differentiation into all four 

cardiac cell types within 7-10 days.  About 35% of these cells express myocyte markers, 

25% endothelial markers, 20% smooth muscle markers and 12% fibroblast [60].  The 

majority of these cells are clonogenic [61].  Unfortunately, older CPCs found in heart 

failure patients have shorter telomeres and are less regenerative [62, 173].  Thus there is 

an interest in evaluating the regenerative potential of younger CPC populations [174]. 

 

As discussed earlier, CPCs are insufficient at regenerating the myocardium after an 

infarct and they are presumed to have evolved for maintenance of healthy tissue during 

aging [32].  Recent work has also questioned whether endogenous CPCs reconstitute lost 

myocytes [169]. With intervention, CPCs are a good candidate for repairing the 

myocardium due to their regenerative potential and lack of teratoma formation.  

Intramyocardial injections of CPCs have shown improvements in cardiac function after 

injury, potentially through myocardial regeneration [60, 61, 64].  In the Phase I safety 

trial SCIPIO, 2 million CPCs were delivered through intracoronary infusion about 4 

months after coronary artery bypass grafting surgery in patients with aged infarcts [68].  

There were no adverse effects to CPC infusion.  A year after cell infusion, increases in 

ejection fraction and reduction in scar mass were observed.  Although these 
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improvements are positive, treated patients still had an average ejection fraction of 43%, 

indicative of heart failure and leaving room for improvement. 

4.1.2 Naturally-derived Cardiac Extracellular Matrix 

Decellularized ventricular myocardium was digested to generate a naturally-derived 

cardiac extracellular matrix (cECM) [175-177].  When isolated from porcine left 

ventricular tissue, cECM is free of cellular debris and contains collagens I-VI, elastin, 

fibrinogen, fibronectin, laminin, fibrilin-1, lumican, fibulin-3 and -5.  Its matrix 

composition is unique from porcine skeletal muscle [176].  Additionally, cECM has a 

glycosaminoglycan content of 23 ug/mg [175].  When gelled at concentrations of 6 

mg/mL, nanofibers of 40-100 nm in diameter were observed [175].  Because it is digested 

rather than in a patch form, it can be used as an injectable hydrogel that self-assembles 

into a porous and fibrous scaffold in vivo, opening up the possibility for minimally 

invasive delivery [175, 178, 179].  When injected into the rat myocardium, cECM has 

shown an immune response comparable to implanted decellularized small intestine 

submucosa and syngeneic muscle implants [178].  Moreover, there were more surviving 

myocytes in matrix-injected hearts and presence of troponin, Ki67 double-positive cells 

and low numbers of c-kit positive cells were observed, suggesting cECM may support 

myocardial regeneration.  The material also supports NRVM culture and the migration of 

endothelial and smooth muscle cells [175].  Human embryonic stem cell-derived 

cardiomyocytes showed improved multi-cellular organization in long-term cultures on 

cECM as compared to gelatin [176].  As a potentially autologous source for 

decellularized matrix, human pericardial matrix was compared to porcine pericardial 

decellularized matrix [180].  Pericardial matrix has a higher glycosaminoglycan content 

and distinct matrix composition, lacking laminin and fibronectin, when compared to 

ventricular matrix.  However, it was injectable and gelled in the myocardium, promoting 

neovascularization and recruitment of c-kit positive cells [180].  Human cadaveric 
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decellularized ventricular ECM has also been considered for therapy [177].  More than 

half of human cECM samples did not self-assemble, possibly due to age-related matrix 

changes including higher crosslinking and the deposition of adipose and fibrotic tissues.  

Human cECM had a similar matrix composition to porcine, but lower glycosaminoglycan 

content.  The authors concluded that porcine cECM was superior for therapy since it is 

compositionally similar to human cECM, but easier to source and more consistent [177].  

While not applicable to MI therapy at this time, decellularization of rat myocardium at 

various stages of development showed that fetal cECM better supports NRVM 

proliferation [40].  To optimize cell therapy it is important to evaluate the effects of 

matrix composition on cell behavior.  Developmental stage effected protein content as a 

decrease in fibronectin, collagen IV and periostin, with an increase in collagens I and III 

and laminin was observed with increasing age.  Fetal cECM had a smaller fiber diameter 

and less collagen organization [40]. 

 

The use of naturally derived biomaterials for MI therapy has been limited by their 

mechanical properties.  To increase the stiffness of cECM, it can be crosslinked with 

glutaraldehyde [181].  This slows degradation and increases the storage modulus 25-fold, 

but even-crosslinked cECM is still much softer than native myocardium.  Additionally, 

crosslinking agents should be avoided to reduce the likelihood of triggering an immune 

response [182].  Alternatively, cECM can be tethered to poly-(ethylene glycol) to tune its 

stiffness, degradation kinetics and nanofiber dimensions [183].  In a pre-clinical porcine 

model, cECM was injected into the border zone two weeks post-MI [184].  This 

timepoint is clinically relevant as it allows time to identify patients and the myocardium 

is less susceptible to rupture.  Additionally, there are fewer matrix metalloproteinases 

present, contributing to longer lifetime of the material before degradation.  cECM 

remained in the myocardium for about 1 week and was undetectable by 4 weeks.  Three 

months post-injection, the ejection fraction of animals that received matrix was 
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significantly higher and both end diastolic and systolic volumes were lower.  Viable 

muscle was detected in the cECM injected regions [184].  This study demonstrated safety 

and led to the initiation of clinical trials. 

4.1.3 Cell Therapy 

Cellular therapy has shown early success as a potential treatment for improving acute 

cardiac function post-MI [2, 26, 185, 186].  MSC injection into the infarcted myocardium 

shows decreased fibrosis and improvement in certain heart function parameters [26, 52].   

While exciting, this finding was not due to reconstitution of the myocardium, but 

attributed to increased angiogenesis [2].  In 2003, the heart was found to have a 

population of stem/progenitor cells capable of cardiac differentiation, termed cardiac 

progenitor cells (CPCs) [60].  These cells are clonogenic, self-renewing, and capable of 

differentiation into the 4 major cardiac cell types (cardiomyocyte, endothelial, smooth 

muscle, fibroblast), [61, 64].  For these reasons, and because CPCs do not form teratomas 

in cell therapies, they are a good candidate for repairing the myocardium. Intramyocardial 

injections of CPCs have shown improvements in cardiac function after injury, potentially 

through myocardial regeneration [60-62, 64].  Phase 1 clinical trials are underway with 

injection of autologous CPCs and are promising [102].  However, while many cell 

therapy trials show acute success, improvements in chronic function remain a challenge. 

This is most likely due to the fact that local delivery of cells faces several shortcomings 

such as poor retention of the cells in the myocardium, reduced survival, and poor 

differentiation and maturation of implanted cells [187].  Due to these issues, the 

mechanisms by which positive effects have been seen are controversial (i.e. paracrine 

factors vs. regeneration) [52, 187]. 

 

Cellular phenotypes are influenced by their microenvironment.  Matrix stiffness [102, 

188, 189], organization [Hynes 2009], and biochemistry [87, 90, 190] have been shown 
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to influence cell fate.  These signals are transduced intracellularly through receptor-ligand 

interactions, mainly integrins [191].  It is important to consider that these trends are likely 

to be matrix and cell type specific.  By providing cells with an ideal microenvironment, it 

is plausible that the cells will have a more favorable outcome (i.e. improved survival, 

proliferation, differentiation).  This is achieved either in vitro by culturing cells on a 

matrix or in vivo by administering cells within a matrix that can assemble into a three-

dimensional scaffold.  Injectable biomaterials are attractive as potential cell delivery 

vehicles as they can provide a suitable microenvironment and can potentially be delivered 

via minimally invasive catheters [70].  Cellular therapies have been combined with 

various matrices to treat MI [71, 73-77].  The major disadvantage of the currently used 

biomaterials for myocardial regeneration is that they lack the complexity and specificity 

of the native myocardial extracellular matrix [79].   

 

In this study, a naturally-derived, porcine cardiac extracellular matrix (cECM) was 

examined for the ability to improve CPC function.  Our hypothesis was centered on the 

fact that this would mimic the biochemical cues of a healthy myocardium, while collagen 

would represent both the diseased area and a commonly used cell delivery vehicle [77].  

Our results demonstrate that CPCs prefer the naturally-derived cECM over collagen as 

measured by cardiomyogenic gene expression, cell survival, proliferation, and adhesion.   
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4.2 Results 

4.2.1 Gene expression analysis of CPC differentiation 

 

Figure 1. Cardiogenic gene expression of CPCs cultured on cECM and COL.  CPCs were 

cultured on cECM (black bars) or COL (white bars) for 2 days and cardiomyocyte (A), 

fibroblast (B) and endothelial and smooth muscle (C) lineage markers evaluated by 

qPCR.  Results were normalized to GAPDH and expressed as a fold change for cECM 

over COL (∆∆Ct) and reported as a mean ± SEM.  Unpaired student’s t-test; *p<0.05, 

**p<0.01, n=4-6.  COL = collagen, cECM = cardiac decellularized extracellular matrix, 

tnn = troponin, mhc = myosin heavy chain, FSP = fibroblast specific protein, vwf = von 

Willebrand factor, sm = smooth muscle, GAPDH = glyceraldehyde-3-phosphate 

dehydrogenase. 

 

In order to measure the effects of cECM on CPCs cardiogenic differentiation, real-time 

quantitative PCR was performed.  CPCs were analyzed for each potential lineage: gata-4, 

nkx-2.5, -myosin heavy chain (-mhc), troponinC, troponinT (tnn; cardiomyocyte); 

smooth muscle (sm) -actin, sm22(smooth muscle); von Willbrand Factor (vwf), tie2 

(endothelial); and fibroblast-specific protein 1 (FSP; fibroblast).  As shown in Figure 1, 

culture of CPCs on cECM significantly (p<0.05) increased the expression of early 

cardiomyocyte markers, nkx-2.5 (2.3 ± 0.4-fold),  -mhc (14.6 ± 4.4-fold), and troponinC 

(2.4 ± 0.2-fold) as compared with cells cultured on collagen I (COL).  While there was a 
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trend for increased gata-4 and troponinT, they did not reach significance.  In addition, 

there was a significant decrease in the expression of the fibroblastic marker FSP (0.5 ± 

0.1-fold) in cells cultured on cECM compared with COL (p<0.01).  No significant 

differences were seen for the selected endothelial and smooth muscle markers.   When 

extended to day 7, there was still no increase in smooth muscle or fibroblastic markers 

(data not shown). Further, to determine whether this response was tissue-specific, we 

examined gene expression changes in cells cultured on adipose-derived ECM as 

described in [192].  In contrast to cECM, there was no significant increase in any cardiac 

marker expression in cells cultured on adipose ECM compared with collagen (Figure 2).  

Additionally, the decrease seen in FSP in cells cultured on cECM was not seen in cells 

cultured on adipose ECM.  These data suggest that cells seeded on cECM demonstrate 

enhanced differentiation or maturation toward the cardiac lineage and decreased 

maturation toward the fibroblastic lineage as compared to COL. 

 

Figure 2.  Cardiogenic gene expression of CPCs cultured on ADP and COL.  CPCs were 

cultured on cECM (black bars) or COL (white bars) for 2 days and cardiomyocyte (A), 

fibroblast (B) and endothelial and smooth muscle (C) Proliferation of CPCs by Coulter 

Counter.  Results were normalized to GAPDH and expressed as a fold change for cECM 

over COL (∆∆Ct) and reported as a mean ± SEM.  Unpaired student’s t-test; *p<0.05, 

**p<0.01, n=4-6.  COL = collagen, ADP = adipose-derived decellularized  extracellular 
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matrix, tnn = troponin, mhc = myosin heavy chain, FSP = fibroblast specific protein, vwf 

= von Willebrand factor, sm = smooth muscle, GAPDH = glyceraldehyde-3-phosphate 

dehydrogenase. 

4.2.2 Western analysis of CPC cardiomyogenesis 

To determine if gene expression changes were followed by protein changes, Western blot 

analysis was performed on protein samples collected from CPCs cultured on either cECM 

or COL for 7 days.  Figure 3 shows representative blots (b) probed for the cardiomyocyte 

markers Gata-4 and Nkx2.5 along with grouped data (a).  CPCs cultured on cECM had 

significantly higher (p<0.001) levels of Gata-4 as compared to COL (1.8 ± 0.1-fold) after 

normalization to GAPDH.  A similar increase was seen for Nkx2.5 (1.6 ± 0.2-fold; 

p<0.05) in cells cultured on cECM compared to COL.  These data demonstrate that 

significant changes in cardiomyogenic gene expression lead to subsequent increases in 

protein levels. 

 

Figure 3. Western analysis of cardiac protein expression. Protein was isolated from 

cardiac progenitor cells cultured on cECM (black bars) or COL (white bars) for 7 days.  

Grouped data (A) and representative blots (B) are shown as mean ± SEM.  Images were 
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quantified with ImageJ and protein expression was normalized to GAPDH.  Unpaired 

student’s t-test; **p<0.01, ***p<0.001; n=4-6.  COL = collagen, cECM = cardiac 

decellularized extracellular matrix, GAPDH = glyceraldehyde-3-phosphate 

dehydrogenase.. 

4.2.3 Proliferation of CPCs 

In order to determine the effect of cECM on CPC proliferation, cells were cultured on 

cECM or COL in the presence of serum and cell count was measured 48 hours later.  As 

the grouped data in Figure 4 demonstrate, there was a significant (p<0.05) 35% increase 

in proliferation of CPCs on cECM when compared to those seeded on COL (cECM = 

2.9-fold over initial seeding, COL = 2.3-fold).  In addition, we examined this response 

using adipose ECM to determine the role of tissue-specificity.  As the data in Figure 2 

demonstrate, there was no significant increase in proliferation in cells cultured on adipose 

ECM compared with collagen.  These data show that cECM is a better substrate for CPC 

proliferation as compared to COL. 

 

   

Figure 4. Improved CPC cell number on cECM and COL. (A) Cardiac progenitor cells 

(CPCs) seeded on cECM or COL were cultured for 48 hours.  Fold change in cell number 

was calculated as the final cell count divided by the number of cells seeded as determine 

by Coulter counting. (B-C) CPCs cultured on cECM or COL were serum-deprived for 12 

hours, then harvested for Annexin V staining.  Representative histograms of Annexin V 

A     B     C 
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staining for CPCs cultured on cECM (black) and COL (blue) are shown (B). Gating was 

based on CPCs that were not serum-deprived (dotted line).  Box and whisker plots (C) 

show mean, quartile ± SEM for grouped data.  Paired student’s t-test; *p<0.05, 

***p<0.001; n=6-7. COL = collagen, cECM = cardiac decellularized extracellular matrix. 

 

4.2.4 Survival of CPCs 

To evaluate the effects of cECM on CPC survival, Annexin V staining was performed 

after CPCs seeded on either cECM or COL were serum-starved for 12 hours.  Figure 4 

shows a representative histogram of Annexin V staining, illustrating decreased apoptosis 

for CPCs cultured on cECM as compared to COL.  Grouped data demonstrate a 

significant reduction in percent apoptosis for cells cultured on cECM (40% ± 14%), as 

compared to COL (53% ± 14%; p<0.001).  These data show a significant improvement in 

survival for cells cultured on cECM as compared to COL. 

4.2.5 Adhesion of CPCs 

To determine if CPCs adhered more strongly to cECM or COL, microfluidic adhesion 

assays were performed under increasing levels of shear stress.  The grouped data in 

Figure 5 show that CPCs cultured on cECM adhere more strongly as compared to CPCs 

cultured on COL as represented by the higher fraction of adherent cells over increasing 

shear stresses.  The force at which 50% of the cells were removed was 120 dynes/cm
2
 for 

cells cultured on cECM compared with 60 dynes/cm
2
 for COL.  CPCs cultured on 

fibronectin and laminin adhere to their substrate with a similar strength to CPCs cultured 

on COL (data not shown).  These data provide evidence that CPCs adhere more tightly to 

cECM as compared to COL. 
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Figure 5. CPC adhesion to cECM and COL.  CPC adherence to cECM (yellow) and COL 

(blue) was determined by microfluidic adhesion assay where cells were subjected to 

increasing shear stresses.  (A) Representative images of microfluidic assay.  (B) Grouped 

data shows mean ± SEM fraction of adherent cells (left-axis) over time with increasing 

shear stresses (dotted line, right-axis).  CPC adherence to fibronectin and laminin were 

similar to COL (data not shown). 

 

4.2.6 PCR-array data 

In order to investigate the global regulation of extracellular-matrix related proteins in 

CPCs, cells were cultured on cECM or COL for 48 hours and samples were pooled from 

3 experiments for gene array analysis and presented in Figure 6.  Extracted data 

demonstrated >2.5-fold increases in lama3 (laminin 5; 3.55-fold), mmp3 (3.20-fold), 

mmp10 (2.46-fold), mmp13 (11.79-fold), mmp16 (3.25-fold), timp3 (4.17-fold), and tnc 

(tenascinC; 4.92-fold).  Interestingly, col1a1 was detected in COL cultured CPCs but not 

in cECM-cultured cells.  CD44, a receptor for hyaluronic acid was also increased in 

cECM compared to COL (4.63-fold).  These data demonstrate that cells cultured on 
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cECM display enhanced expression of collagenases, as well as increased expression of 

laminin, suggesting extensive remodeling of the extracellular environment. 

 

 

Figure 6. Extracellular matrix and adhesion molecule PCR array.CPCs were cultured on 

either cECM (y-axis) or COL (x-axis) for 2 days and 3 samples from each condition were 

pooled for a total of 1 mg cDNA.  PCR array plates were purchased from Qiagen 

(SABiosciences).  Results are presented as logddCt and considered significantly up- (red 

diamonds) or down- (green triangle) regulated for ± 2.5-fold changes for cECM 

compared to COL.  Gray line represents no change in gene expression between 

conditions. 
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4.3 Discussion 

Adult stem cell delivery is a promising therapy that has shown improvements in early 

clinical trials.  Despite these exciting preliminary trials, problems still exist in the 

retention, survival, and maturation of implanted cells [187].  While natural and synthetic 

materials may have the potential to improve some of these parameters, great care must be 

taken to ensure that the implanted cells receive the proper signals to support their 

function.  In this report, we identify a naturally-derived, decellularized cardiac 

extracellular matrix (cECM) that is capable of enhancing cardiac progenitor cell (CPC) 

adhesion, growth, survival, and maturation as compared with the commonly used matrix 

collagen I (COL).   While the original three-dimensional structure is lost when preparing 

the liquid form of cECM, the liquid matrix still retains ECM proteins and peptide 

fragments, and thus many of the original biochemical cues, providing a mimic of the 

adult heart ECM [175, 176]. 

 

In order to repair the infarcted myocardium, it is expected that new cardiomyocytes must 

be generated and that the continued deposition of a collagen scar must be slowed.  CPCs 

are capable of differentiating into all cardiac cell types [61, 64], though their function can 

be enhanced by soluble factors and genetic manipulation.  Here, we show that culture of 

CPCs on cECM increases the expression of early cardiac markers after 2 days of 

treatment [193].  Of these markers, two (Gata-4 and Nkx2.5) were chosen for 

examination at the protein level after 7 days of treatment.  A significant increase in Gata-

4 and Nkx2.5 protein levels was demonstrated through Western blot. While we do not 

present evidence of functional cardiomyogenesis, we show cECM increases the 

propensity of CPCs to become cardiomyocyte precursors.  It is unlikely that this short 

time period would show significant differences in cardiomyogenesis.  Longer periods of 

genetic analysis were not performed as the initial matrix is likely replaced after 3 days 

[15, 18].  In fact, our PCR array data suggest that CPCs cultured on cECM may actively 
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replace extracellular matrix proteins via upregulation of collagenases such as mmp3, 10, 

13 and 16.  Additionally, there was a >3.5-fold increase in laminin, as well as smaller 

increases in collagen IV and fibronectin (~1.5-2-fold) suggesting the deposition of a more 

complex extracellular matrix.  Increases in these cardiac markers, specifically the more 

mature -MHC and troponins, are well associated with increased maturation of 

progenitor cells [194, 195].  MHC and troponin expression is known to follow Nkx2.5 

and Gata-4 in development, and cells with increased expression of these markers 

demonstrate improved regenerative capacity.  In agreement with these results, we 

previously demonstrated enhanced maturation of human embryonic stem cell derived 

cardiomyocytes when plated on cECM compared to gelatin, as indicated by increased 

multi-cellular organization and desmosome formation [176].  While this is an exciting 

result, human embryonic stem cells have the disadvantage of potentially forming 

teratomas in vivo. 

 

No statistically significant differences in the expression of smooth muscle and early 

endothelial genes were observed, suggesting that cECM treatment is not more or less 

likely to push CPCs toward these lineages than COL.  Lack of maturation to the 

endothelial and smooth muscle lineage may affect implanted cardiomyocyte function as 

endothelial cells play a critical role in cardiomyocyte survival.  While this may be a 

concern, recent studies from our laboratory and others demonstrate robust endothelial and 

smooth muscle cell population of implanted matrices, and thus implanted cells may still 

receive the signals they require [87, 175, 196].  Additionally, a lack of increase in 

endothelial and smooth muscle markers does not necessarily mean CPCs do not 

differentiate/mature to these lineages, as our comparisons are to COL.  Of significant 

note in our study, is the reduction in fibroblast specific protein 1 (FSP), a fibroblastic 

marker, after two days of culture on cECM compared to COL.  Fibroblasts are largely 

responsible for depositing collagens in the myocardium following MI, and a reduction in 
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FSP may correlate to a reduction in collagen production; however this was outside the 

scope of this study.  Once again, our PCR data confirms this potential phenotype through 

upregulation of collagenases and deposition of more contractile collagen isoforms 

(collagen III and IV).  

 

Our studies also demonstrate cECM to be a better substrate for proliferation of CPCs than 

COL.  This may be important for cell transplantation, when many cells are lost or diffuse 

away from the site of injection [187].  While most matrices would inhibit this loss, 

enhanced proliferation is an added benefit as it may increase the likelihood for tissue 

repair by brute numbers.  Unlike embryonic stem cells, CPCs have not been shown to 

induce tumor formation upon injection making their enhanced proliferation less of a 

concern [197].  Aside from cECM’s conceivable use as a delivery vehicle, another 

potential use for cECM is for the expansion of these cells in vitro following tissue 

harvest.  Current clinical protocols for autologous CPC therapy call for the removal of 

patient tissue biopsies, followed by isolation and expansion of the c-kit+ fraction.  This 

now takes up to 3 months for patients to receive their own cells back, and tissue 

damage/loss is still occurring in this time [67, 68].  Culture of cells on cECM during 

expansion could lead to faster implantation times for patients and improve functional 

recovery.  In conjunction with enhanced proliferation, cECM provides protection to 

CPCs under stress from serum-starvation.  A 12% reduction in apoptosis as seen in our 

studies on cECM compared to COL is quite significant.  In a clinical setting, this could 

translate to more than 100,000 additional viable cells as a patient receives a dose of 1 

million cells [68].  These results show promise for future work, as CPCs injected within a 

cECM hydrogel into the infarcted myocardium may be better primed to survive the harsh 

conditions than cells injected with COL.    
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This study compares cECM to COL and does not include other matrix components, or the 

use of tissue culture plastic as a control.  COL was chosen due to its abundance in both 

the myocardium following infarction, as well as its use as a cell delivery vehicle.  In 

future work, it would be relevant to examine the effects of other single protein matrix 

components on CPC differentiation, proliferation, and survival.  Collagen IV and laminin 

are present in CPC niches, while collagen III and fibronectin are also present in the 

myocardium post-MI [21].  Additionally, how cells respond on tissue culture plastic was 

not examined in this study as the response would be largely irrelevant for the reason 

discussed above.  We did not examine how these cells respond in three-dimensional 

culture, and it is possible that behaviors do not mimic results seen in two-dimensional 

coating experiments.  While this may mimic the conditions under which CPCs would be 

cultured if cECM is used for pre-conditioning, it does not adequately address the 

proposed in vivo model in which CPCs are injected with cECM to form a three-

dimensional hydrogel in vivo.  Moreover, there is also a possibility that CPCs may be 

cultured in three-dimension using this material and may behave quite differently than 

seen in our study.   

 

As noted previously, one of the limitations of stem cell injection in the infarcted 

myocardium is the lack of retention of the cells [187].  Microfluidic adhesion assay 

shows that CPCs adhere more strongly to cECM than COL.  Additionally, other single 

protein ECM components were tested (laminin and fibronectin) and similar adhesion as 

COL was seen (data not shown).  These results suggest that CPCs may interact more 

tightly with the more complex cECM than single matrix proteins like COL, which may 

play a role in the other findings in this study.  It is unclear if the forces used in this study 

represent the post-infarct tissue environment as the assay is merely intended to 

demonstrate cell-material interaction strength.  Tighter adhesion to ECM is shown to 

improve survival, proliferation, and growth of cells as this may lead to enhanced integrin 
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activation [113].  While this study does not determine mechanistic pathways, integrins 

such as the 1 integrin are critical for cardiac development.  Modulation of the 1 

integrin negatively affects cardiomyocyte function, post-injury healing, and stem cell 

differentiation [158, 198].  Additionally, in mesenchymal stem cells, while 1 regulates 

adhesion to the ECM, v3 may regulate differentiation [199, 200].  Cardiac progenitor 

cells exist in niches that are rich in laminin, and thus a more complex mix of integrins 

may regulate different functions [63].  Full compositional characterization of the cECM 

has not yet been achieved, though initial mass spectrometry studies determined the 

presence of collagens I-VI, elastin, fibrinogen, fibronectin, laminin, fibrillin-1, lumican, 

and fibulin-3 and -5 [176].  These components are not surprising given that the 

myocardium is known to contain collagens I and III, laminin, fibronectin, and elastin [19, 

201].   Finally, our array data demonstrates a substantial (>4-fold) increase in tenascinC 

gene expression.  While the role of tenascin in CPCs is unstudied, it plays an important 

role in the adhesion and mitogen responses of hematopoetic progenitors and this study 

identifies a potential role for its involvement in the cECM response [202]. 

 

Previously, the successful use of cECM as an injectable biomaterial has been established 

[175, 178].  When injected into the rat myocardium, cECM has shown an immune 

response comparable to implanted decellularized small intestine submucosa and 

syngeneic muscle implants [178].  Numerous xenogeneic decellularized ECMs have been 

cleared by the FDA, are considered biocompatible, and are in clinical use [203].  

Appropriate processing however needs to be performed to avoid significant residual 

DNA and detergents, and xenogeneic antigens are always of concern.  Our decellularized 

cardiac matrix, however, appears to have excellent biocompatibility though further 

antigenicity and biocompatibility tests are underway prior to clinical translation.  Because 

it is digested rather than in a patch form, it can be used as an injectable hydrogel that self-

assembles into a porous and fibrous scaffold in vivo, opening up the possibility of 
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minimally invasive delivery [179]. In fact, recent studies demonstrate the cECM hydrogel 

can be delivered as a liquid to the myocardium of pigs through a minimally invasive, 

transendocardial catheter injection, and subsequently form a scaffold in vivo [178].  This 

liquid form requires the use of pepsin, which does remain in the material, although it is 

inactivated in the process of the pH adjustment and has previously been used in other 

FDA approved products.  Interestingly, when delivered intramyocardially in rats, cECM 

demonstrated improved function compared with untreated animals, with an observed 

increase in cardiomyocytes [178].  The source of the myocytes was not determined, 

though taken together with our studies it may suggest the mechanism of enhanced 

endogenous CPC proliferation and differentiation.  While not done in this study, stem 

cells have been delivered to patients via intramyocardial catheters and thus this approach 

may have great clinical significance.  For the myocardium, small intestine submucosa 

(SIS) and urinary bladder matrix have been examined for treating cardiac wall defects 

and MI.  Although SIS and bladder matrix patches, and a SIS emulsion have resulted in 

cell infiltration, [204-206] they have also caused undesirable tissue formation such as 

adipose and even cartilaginous tissue, [205] potentially due to inappropriate cell-matrix 

interactions. While the ECM contains similar components across tissues, each tissue does 

have its own distinct combination of ECM components.  Our data with cECM and 

preliminary results with adipose ECM demonstrate the importance of tissue-specific 

ECM cues in regulating progenitor cell growth, survival, differentiation, and adhesion. 
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CHAPTER 5  EFFECTS OF CYCLIC STRAIN ON CPC 

BEHAVIOR ARE EXTRACELLULAR MATRIX-DEPENDENT 

The myocardium is a dynamic heterogeneous tissue that changes in matrix composition 

and mechanical properties from development, through aging and disease.  Endogenous 

cells are exposed to a variety of microenvironments during these changes.  The 

biochemical or biomechanical cues necessary to activate an endogenous cardiac 

progenitor cell (CPC) response or to best precondition or deliver CPCs for cell therapy is 

unknown.  We aim to assess the effect of matrix composition and strain magnitude on 

CPC behavior by mimicking microenvironments from the myocardium.  For this, laminin 

(LN, niche), fibronectin (FN, infarct), collagen I (COL, infarct), a naturally-derived 

cardiac extracellular matrix (cECM, healthy myocardium) and poly-l-lysine (PLL, 

negative control) were evaluated as ECM conditions.  Simultaneously, 0 (negative 

control), 5 (infarct), 10 (literature condition) and 15% (healthy) strain were evaluated.  

Our results show that CPCs align in response to cyclic strain when cultured on a matrix 

protein.  Cell division is higher at lower strain magnitudes and on fibronectin.  These 

culture conditions are summarized in Figure 7.  CPCs cultured on FN, COL or cECM 

oscillate calcium.  Strain increases vascular endothelial growth factor concentration in 

conditioned media from CPCs on LN and cECM; basal concentrations are high for FN, 

COL and PLL.  Connexin 43 expression was increased in unstrained CPCs on FN and 

COL and decreased with increasing strain magnitude on COL and cECM.  Activation of 

focal adhesion kinase was observed upon cell attachment and was maintained by the 

application of 15 minutes of cyclic strain.  FN further maintained this activation for 24 

hours of cyclic strain.  Activation of extracellular signal-regulated kinase was increased 

at 15 minutes of cyclic strain on cECM for higher strain magnitudes and COL and PLL at 

lower strain magnitudes.  Results for Aim 2 are summarized in Error! Reference source 
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not found..  These data suggest that CPCs integrate complex signals from the 

microenvironment into their behavior.   

 

Figure 7. Microenvironments Mimicked in Experimental Design. 

5.1 Introduction 

5.1.1 Extracellular Matrix Components in the Myocardium 

The distinct microenvironments of the myocardium during development, adulthood and 

disease were discussed in the background.  Briefly, after MI there is an increase in 

collagen and fibronectin content and a decrease in laminin content [21].  A distinct 

environment, the stem cell niche is a local collection of stem cells surrounded by ECM 

and supporting cells.  Niches control stem cell self-renewal.  Loss of contact with the 

niche leads to differentiation of a stem cell [207].  The expression and localization of 

ECM proteins in the CPCs niche is unknown; but the niche is speculated to maintain 



www.manaraa.com

 49 

CPCs in a quiescent state [82].  Fibronectin is present, although not exclusively 

expressed, in cardiac niches [62].  Laminin is also present in cardiac niches and surrounds 

CPCs more closely [63].  Collagen IV, osteopontin, tenascinC, chondroitin sulfate and 

heparin sulfate play roles in development and may also be involved in CPC niches [82].  

Niches for cardiac progenitor cells identified by the insulin gene enhancer protein contain 

collagen IV and laminin in close proximity to the progenitor cells, with fibronectin and 

collagen I found outside of niche [86].  Differentiating cardiac progenitors migrate away 

from the niche and it is important to identify signals from the microenvironment that are 

responsible for activating CPCs for regeneration after MI.  In this section, distinct 

characteristics of individual matrix proteins will be discussed.   

 

The molecular weight of fibronectin (440 kDa) and collagen I (390 kDa) are fairly 

similar, but laminin (850 kDa) is much larger.  Fibronectin plays a role in cell adhesion, 

migration, growth and differentiation.  Its dimer has 6 distinct integrin binding sites, as 

well as binding domains for heparin, collagen and fibrin [208].  Some of these binding 

domains are buried in cryptic sites.  The bond strength between fibronectin and an 

integrin, estimated to be 30-100 pN, is 10-fold higher than the force required to unfold 

cryptic subdomains [47].  Fibronectin expression correlates with increase in CPC 

presence in the myocardium and the two are found in close proximity in development and 

disease.  In global knockouts of fibronectin, CPC expansion and survival were impaired, 

reducing the number of newly formed myocytes [209].  Fibronectin may play a crucial 

role in CPC expansion and maturation.  The primary role of collagen I is to provide 

structural support and force transmission [17].  Collagen I has 3 distinct integrin binding 

sites [210].  The binding of integrins to collagen I is dependent on its quaternary 

structures [211].  Laminin directs development, migration and differentiation [45, 212].  

The gamma-1 chain of laminin has 7 distinct adhesion domains [213].  In its trimeric 

form, laminin as 19 distinct integrin binding site [214].  Poly-l-lysine is often used a 
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negative control in cell culture since it should not activate integrins.  Instead cells adhere 

to poly-l-lysine through electrostatics [215]. 

5.1.2 Mechanical Strain for Cell Stimulation 

The active contracting of the myocardium exposes cardiac cells to a cyclic strain.  The 

response of strain on cardiomyocytes in vitro is to elongate and align perpendicular to the 

direction of strain [112].  Neonatal cardiomyocytes are more proliferative and increase 

protein production when exposed to strain [117, 123, 129, 216].  Furthermore, cyclically 

straining NRVM increased their connexin 43 (Cnx43) expression 2-fold.  Interestingly, 

the same effect could be achieved by incubating unstrained cells with soluble vascular 

endothelial growth factor (VEGF) [217].  The release of VEGF from strained 

cardiomyocytes is dependent on focal adhesion kinase (FAK).  In return, VEGF activates 

extracellular signal-regulated kinase (ERK) and leads to the expression of Cnx43 [218].  

In stem cell populations, cyclic strain has been demonstrated to increase cardiomyogenic 

gene expression [20, 139, 219].  In mesenchymal stem cells, this effect is dependent on 

the matrix conditions [139].  Strain is also used to condition three-dimensional 

engineered cardiac tissue into constructs that beat spontaneously and resemble the 

neonatal myocardium [220].  In tissue engineered constructs containing embryonic stem 

cells, mechanical strain after implantation in the MI border zone reduced fibrosis and 

apoptosis and improved neovascularization over strain resistant constructs [219]. 

 

Mechanotransduction pathways are activated by mechanical strain.  The beta1 integrin 

plays various roles in stem cell maintenance, differentiation and proliferation depending 

on cell type and the alpha subunit present in the heterodimer [146, 221].  FAK activation 

occurs downstream of outside-in integrin signaling.  Adhesion to collagen, laminin and 

fibronectin, but not poly-l-lysine triggered FAK phosphorylation within 20 minutes 

[222].  Phosphorylation of FAK was lower in cells seeded on fibronectin-coated 



www.manaraa.com

 51 

polyacrylamide gels than those seeded on fibronectin-coated tissue culture plates, 

indicating its activation may be dependent on substrate stiffness [103].  Additionally, 

strain induced FAK phosphorylation in various cell types within minutes and was 

maintained for hours [152, 164, 165, 223-226].  NRVM, this signaling was dependent on 

the beta1 integrin subunit [163].  Following FAK activation with cyclic strain, ERK 

phosphorylation transiently increased [165, 223, 224, 226].  ERK activation could be 

suppressed by mutating FAK [223].  As another signaling mechanism, cyclic strain 

dissociates RhoA from FAK [164].  In addition to activation, mechanical strain can also 

increase the expression of FAK and the beta1 integrin subunit [127].  The effect of cyclic 

strain on cardiac progenitor cells is unknown.  Strain magnitudes in this proposal will be 

based on physiological conditions (healthy myocardium = 15%, infarcted myocardium = 

5% [31]) and in vitro optimization assays (improved cardiomyogenesis = 10% [227]). 

5.1.3 Calcium Handling in Cardiac Cells 

The contractile force of adult cardiomyocytes is regulated by the size and duration of 

their calcium transients [98].  Not only is calcium cycling regulated by mechanical load, 

but because the mechanical properties of cardiomyocytes are dependent on cytoplasmic 

calcium, mechanotransduction is coupled to calcium signaling pathways in a cyclic 

fashion [228].  As cardiomyocytes mature, they increase expression of the ryanodine 

receptor and sarcoendoplasmic reticulum calcium transport ATPase (SERCA) [98].  This 

shifts the source of calcium for transient from the extracellular space in immature cells to 

the sarcoplasmic reticulum in mature cells [99].  Expression of SERCA, but not L-type 

calcium channels, is stiffness dependent [98].  However, alignment of NRVM increases 

L-type calcium channel expression [111].  Cell shape, membrane rigidity and the 

activation of mechanosensitive ion channels through the application of mechanical strain 

all influence intracellular calcium [229-232].  Integrins may also be involved in 

regulating calcium handling.  Beta3 integrin knockout in mice reduced SERCA transcript 
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levels [233].  SERCA levels are also reduced in cardiac hypertrophy [233].  Regenerative 

medicine may be able to restore SERCA levels [234]. 

 

Human CPCs express SERCA, inositol trisphosphate receptor, sodium calcium 

exchanger and low expression of the L-type calcium channel [235].  Ryanodine receptor 

is not detected in these cells.  Spontaneous calcium oscillations were observed in 20% of 

CPCs and they averaged 2 oscillations, with an average duration of 80 seconds, in 33 

minutes.  The percent of active cells increased after 2 hours in Tyrode solution.  

Oscillations were mediated primarily through the inositol trisphosphate receptor and 

SERCA and were independent of gap junctions.  Interestingly, calcium oscillations 

correlated with increased entry of CPCs into the cell cycle.  Stimulating calcium 

oscillations in CPCs before intramyocardial infusion in infarcted mice improved their 

engraftment and expansion [235].  Further work from the same group showed that the 

number of cycling CPCs could be increased by stimulating the inositol trisphosphate 

receptor in the cells with adenosine triphosphate and that this lead to increased 

bromodeoxyuridine incorporation [236].  Only 10% of the CPCs had spontaneous 

calcium oscillations in Tyrodes solutions, but this increased to 70% with adenosine 

triphosphate stimulation.  Induction of calcium oscillations also led to an increase in 

asymmetrical division [236].  Manipulation of CPCs through engineered expression of 

the human serine/threonine kinase Pim-1 and co-culture with neonatal rat cardiomyocytes 

produces CPCs with cardiomyocyte-like calcium transients [237]. 

 

Connexin 43 (Cnx43) expression is diffuse in endogenous CPCs, but these cells can form 

gap junctions with mature cardiomyocytes [63, 235].  In addition to electrically coupling 

cells, Cnx43 is protective in cardiomyocytes and regulates proliferation in the H9C2 

cardiomyocyte cell line [238, 239].  Hypoxia, present in disease states, induces 

dysregulation of Cnx43 [240].  However, Cnx43 expression can be restored through 
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cyclic strain [99].  Culture of NRVM in the presence of strain with fibronectin increased 

their expression of Cnx43 as compared to culture on COL [84].  Additionally, autocrine 

and paracrine signaling through VEGF, released by strained myocytes, increased Cnx43 

expression [217]. 

 

This aim takes a combinatorial approach to evaluate the response of CPCs to extracellular 

matrix proteins and mechanical strain.  We sought to determine if a single stimuli was 

sufficient to induce CPC cardiomyogenic maturation or if a complex set of signals is 

necessary.  We aimed to identify the signal(s) necessary for CPC activation, and in 

comparison CPC maintenance.  The response of CPCs to microenvironmental stimuli is 

dependent on extracellular matrix and strain conditions. 

5.2 Results 

5.2.1 Statistics 

For all data sets, two-way ANOVAs were performed to establish overall effects of matrix 

and strain on a given endpoint.  No post-test results are reported for the two-way 

ANOVA as we cannot compare between all relevant groups simultaneously.  Instead the 

same data was analyzed by one-way ANOVAs to establish specific effects of matrix or 

strain, except where noted.  All one-way ANOVA post-tests are Tukey’s multiple 

comparison test allowing for the comparison of all groups to each other.  Ultimately, this 

does not allow for direct comparisons of all culture conditions, but does allow 

conclusions to be drawn regarding the effect of strain for CPCs cultured on a given 

matrix and the effect of matrix conditions for a given strain.  GraphPad Prism 5 was used 

for all statistical analysis. 
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5.2.2 Alignment 

 

Figure 8. Representative Strain Images. CPCs were seeded on the appropriate matrix for 

6 hours and then cyclic strain was applied for 24 hours.  Blue = DAPI, Green = FITC-

maleimide; arrow indicates principle direction of strain; 0-15%: strain magnitude; PLL = 

poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-

derived cardiac extracellular matrix. 

 

To determine if CPCs align in response to mechanical strain and if potential alignment 

was matrix-dependent, CPCs were seeded as described in the methods and evaluated by 

immunocytochemistry.  Representative images are shown in Figure 8.  By two-way 

ANOVA, there is an overall effect of matrix (p<0.0001) and strain (p<0.0001) on CPC 

alignment, with an observed interaction (p<0.0001).  To further examine these effects, 
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Kruskal-Wallis tests with Dunn’s multiple comparison tests were chosen due to unequal 

variances between data sets and performed for each strain group (0-15%) and each matrix 

group.  For unstrained cells, there was an overall effect of matrix condition, but with no 

significant difference by post-tests.  With the application of 5% strain, more CPCs align 

on COL (58%) than PLL (18%; p<0.01).  At 10% strain, CPCs aligned better on COL 

(60%) than PLL (22%; <0.01), LN (22%; <0.05).  At 15%, CPCs aligned better on FN 

(42%; p<0.001) and COL (54%; p<0.001) as compared to PLL (15%).  Alignment 

quantification is reported in Figure 9. 
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Figure 9. Quantification of Alignment. CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. (A) Analysis by two-way ANOVA. 

(B) Matrix effects. (C) Strain magnitude effects. (B-C) Kruskal-Wallis one-way ANOVA 

with Dunn’s multiple comparison tests, bars represent mean + SEM, *p<0.05, **p<0.01; 

n =4-7; 0-15: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN 

= fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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Within each matrix group, strain had an effect on alignment. For PLL, less alignment was 

observed at 15% than 10% (p<0.05), although this change was small (7% absolute).  For 

CPCs cultured on LN a small increase in alignment was observed at 15% strain (28%) 

only as compared to 0% (12%; p<0.05).  For CPCs cultured on FN, alignment was 

increased at 10 (51%; p<0.01) and 15% (42%; p<0.05) strains as compared to unstrained 

(12%) cells with no differences in alignment between 5, 10 or 15% strain.  For CPCs 

cultured on COL, alignment was increased at 5 (58%; p<0.05) and 10% (60%; p<0.05) 

strains as compared to unstrained (17%) cells, with no differences in alignment between 

5, 10 or 15% strain.  Similarly, on cECM there was an increase in alignment at 10 (36%; 

p<0.05) and 15% (35%: p<0.01) strains as compared to unstrained (12%) CPCs, with no 

differences in alignment between 5, 10 or 15% strain. 

 

Figure 10. Preliminary Alignment.  CPCs were seeded on the appropriate matrix (50 

ug/cm
2
) for 3 hours and then cyclic strain was applied for 24 hours. (A) Representative 

images; arrow indicates direction of principle strain, (B) Manual quantification, unpaired 

t-test, bars represent mean +  SEM, *p<0.05;  n =4; 0-10: strain magnitude; COL = 

collagen I, cECM = naturally-derived cardiac extracellular matrix. 
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While, these results may be dependent on matrix concentration and CPC seeding density, 

we observed similar effects in earlier studies (Figure 10).  However, we cannot directly 

compare the results as we previously coated plates with 10-times the matrix and seeded 

them with half the number of cells to increase cell-matrix interactions and decrease cell-

cell interactions.  In that system, CPCs seeded on COL had a slight increase in alignment 

at 10% strain (30%) as compared to unstrained cells (19%; t-test: p<0.05).  CPCs seeded 

on cECM aligned better at 10% strain (48%) as compared to unstrained CPCs on cECM 

(19%; t-test: p<0.05).  There was no statistical difference in alignment at 0 or 10% for 

CPCs seeded on cECM as compared to COL.  The remaining culture conditions were not 

examined. 

5.2.3 Spread Area 

In order to evaluate if seeding conditions or mechanical strain affect the spread area of 

CPCs, cells were seeded as described in the methods and immunocytochemistry was 

performed.  The overall average spread area was 960 um
2
.  Representative images are 

shown in Figure 8.  By two-way ANOVA, matrix had an overall effect (p<0.0001), strain 

did not have an overall effect and there was no interaction.  Unstrained CPCs spread 

more on FN (1312 um
2
) and COL (1284 um

2
) as compared to PLL (683 um

2
; p<0.01) and 

LN (804 um
2
; p<0.05), as demonstrated by one-way ANOVA.  With the application of 

5% strain, CPCs on FN (1183 um
2
) remained about as twice as spread than those on PLL 

(612 um
2
; p<0.05).  This effect remained at 10% strain, with cells on FN (1169 um

2
) 

more spread than those on PLL (702 um
2
; p<0.01) or LN (501 um

2
; p<0.001) and cells on 

COL (1037 um
2
; p<0.05) more spread than those on PLL.  For these strain magnitudes, 

the spread area was intermediate for CPCs seeded on cECM.  No difference in cell 

spreading with matrix condition was observed at 15% strain.  Additionally, within each 

matrix group, no effect of strain magnitude was observed.  Quantification of spread area 

is reported in Figure 11. 
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Figure 11. Quantification of Spread Area.  CPCs were seeded on the appropriate matrix 

for 6 hours and then cyclic strain was applied for 24 hours. (A) Two-way ANOVAs. (B) 

Matrix effects. (C) Strain magnitude effects.  (B-C) One-way ANOVA  with Tukey’s 

multiple comparison test, bars represent mean + SEM, *p<0.05, **p<0.01, ***p<0.001; 

n=4-6; 0-15: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN 

= fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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5.2.4 Aspect Ratio 

In order to evaluate if seeding conditions or mechanical strain affect the aspect ratio of 

CPCs, cells were seeded as described in the methods and immunocytochemistry was 

performed.  Representative images are shown in Figure 8.  The aspect ratio was 

determined by dividing the major axis by the minor axis of each cell.  Although small 

changes in aspect ratio were observed, across all conditions CPCs maintain an aspect 

ratio of about 2:1.  Results are reported in Figure 12.  
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Figure 12. Quantification of Aspect Ratio.  CPCs were seeded on the appropriate matrix 

for 6 hours and then cyclic strain was applied for 24 hours. (A) Two-way ANOVA. (B) 

Matrix effects. (C) Strain magnitude effects.  (B-C) One-way ANOVA with Tukey’s 

multiple comparison test, bars represent mean + SEM, *p<0.05; n=4-7; 0-15: strain 

magnitude; PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, 

cECM = naturally-derived cardiac extracellular matrix. 
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5.2.5 Proliferation of CPCs 

As an estimate of proliferation, the number of visibly dividing cells was determined by 

immunocytochemistry for cells cultured under each condition.  Sample images are shown 

in Figure 14 as examples of unique phenotypes.  Asterisk indicates a dividing cell.  

Across all groups, <2% of the CPCs were undergoing cytokinesis in the acquired images 

as identified by nuclear condensation, division and cytoplasm shape.  Dividing cells 

appeared more rounded than non-dividing cells.  By two-way ANOVA, matrix had an 

overall effect (p<0.0001) and strain had an overall effect (p<0.01), without a significant 

interaction.  Analysis by two-way ANOVA is shown in Figure 13.  At 5 and 15% strains, 

CPCs seeded on FN were dividing more than those seeded on LN and PLL.  One-way 

ANOVAs were performed to compare results within each strain magnitude group.  

Results by one-way ANOVA are reported in Figure 15.  For unstrained CPCs, seeding on 

FN (1.2%), COL (1.0%) or cECM (0.9%) increased the number of dividing cells as 

compared to CPCs cultured on PLL (<0.01%; p<0.05 for COL and cECM, p<0.001 for 

FN).  FN culture also increased the number of dividing cells relative to LN (0.5%; 

p<0.01).  At 5% strain, significantly more CPCs were dividing on FN (2.7%) as 

compared to PLL (0.3%; p<0.01) and LN (0.9%; p<0.05).  Matrix did not affect the 

number of dividing cells at 10% nor 15%, although there were trends for FN still 

inducing the highest number of dividing cells.  No significant differences were observed 

between FN, COL and cECM for any strain magnitude. 
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Figure 13. Quantification of Dividing CPCs.  CPCs were seeded on the appropriate 

matrix for 6 hours and then cyclic strain was applied for 24 hours. Two-way ANOVA, 

bars represent mean + SEM; n=4-6;  0-15: strain magnitude; PLL = poly-l-lysine, LN = 

laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived cardiac 

extracellular matrix. 

 

Figure 14. Representative Images of Unique CPC Phenotypes.  CPCs were seeded on the 

appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours.  Arrow 

head shows example of cell with more than one nucleus and continuous cytoplasm; 

Asterisk shows a dividing cell; Black arrow indicates principle direction of strain; 5-10: 

strain magnitude; COL = collagen I, FN = fibronectin. 
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Figure 15. Quantification of Dividing Cells assessed by one-way ANOVA.  CPCs were 

seeded on the appropriate matrix for 6 hours and then cyclic strain was applied for 24 

hours. (A) Matrix effects, (B) Strain magnitude effects;  (A-B) One-way ANOVA with 

Tukey’s multiple comparison test, bars represent mean + SEM; *p<0.05, **p<0.01, 

***p<0.001; n=4-6; 0-15: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = 

collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

5.2.6 Maturation of CPCs 

To determine if matrix or strain conditions affect the differentiation and maturation of 

CPCs, cells were seeded as described in the methods and then harvested with either 

Trizol or NP-40 lysis buffer for qPCR and Western.  Cardiac transcription factors gata-4 

and nkx2.5, as well as the more mature cardiomyogenic markers troponinT1 and 

troponinT2 were detected in all culture conditions by qPCR.  Data is summarized in 

Figure 16.  While the qPCR results were promising, the sample size was too small to 

draw conclusions and further qPCR needs to be performed.   
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Figure 16. CPC cardiomyogenic differentiation by qPCR.  CPCs were seeded on the 

appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. (A) Gata-

4. (B) Nkx2.5. (C) TnnC1. (D) TnnT2. (A-D) Two-way ANOVA, bars represent mean + 

SEM; ns; n=2-5; 5-10: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = 

collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix; 

TnnC1 = troponin C1, TnnT2 = troponin T2. 

5.2.6.1 Connexin 43 Expression 

Connexin 43 (Cnx43), a component of gap junctions, was also detected by qPCR (Figure 

40).  Western blot analysis for Cnx43 revealed that Cnx43 expression had an overall 

dependency on matrix (p<0.001) and strain (p<0.05) conditions, without a significant 

interaction by two-way ANOVA.  Representative blots and analysis by two-way 

ANOVA are shown in Figure 17.  Analysis of individual strain magnitudes by one-way 

ANOVA shows that unstrained CPCs cultured on FN had more Cnx43 (1.4-fold over 
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GAPDH) than those cultured on PLL (1.0-fold; p<0.05), LN (0.9-fold; p<0.05) and 

cECM (1.0-fold; p<0.05).  COL (1.3-fold) induced higher Cx43 expression as compared 

to LN only (p<0.05).  At 5% strain, higher Cnx43 expression was maintained on FN (1.2-

fold) as compared to PLL (0.6-fold; p<0.05).  At 10 and 15% strains, Cnx43 expression 

was not-matrix dependent.  Strain-dependent effects of Cnx43 expression were not 

observed for CPCs cultured on PLL, LN nor FN.  However, Cnx43 expression decreased 

with increasing strain for CPCs on COL (0 v 5%: p<0.01, 0 v 15%: p<0.01) and cECM (0 

v 10%: p<0.01, 0 v 15%: p<0.01, 5 v 15%: p<0.05).  Analysis by one-way ANOVA is 

reported in Figure 18. 

 

Figure 17. Cnx43 expression in CPCs.  CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. Cell lysate was evaluated by 

Western. (A) Quantification by densitometry; Two-way ANOVA, bars represent mean + 

SEM; (B) Representative blots. n=4-7; 0-15: strain magnitude; Cnx43= connexin 43, PLL 



www.manaraa.com

 67 

= poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-

derived cardiac extracellular matrix. 

 

Figure 18. Cnx43 expression in CPCs assessed by one-way ANOVA.  CPCs were seeded 

on the appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. (A) 

Matrix effects. (B) Strain magnitude effects. (A-B) One-way ANOVA with Tukey’s 

multiple comparison test, bars represent mean + SEM; *p<0.05;  n=4-7; 0-15: strain 

magnitude; Cnx43= connexin 43, PLL = poly-l-lysine, LN = laminin, COL = collagen I, 

FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

 

5.2.6.2 Number of Nuclei 

As a further way to identify the maturation of CPCs, cells with more than one nucleus 

where counted.  These cells appeared distinct from dividing cells as the nuclei were 
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spread and the cytoplasm appeared continuous.  Samples images are shown in Figure 14.  

Arrow head indicates cell with more than one nucleus.  Less than 1% of all cells viewed 

contained more than one nucleus.  Strain had an overall effect (p<0.05) by two-way 

ANOVA, the effect of matrix was not significant and no interaction was observed.  

Quantification and analysis by two-way ANOVA are shown in Figure 19.  For CPCs 

seeded on FN, more cells with >1 nucleus were observed at 5% (1.2% cells >1 nucleus) 

than 15% (0.4% cells >1 nucleus) strain (p<0.05) by one-way ANOVA.  Similarly, on 

COL 5% (1.0% cells >1 nucleus) strain groups showed more cells >1 nucleus than 

unstrained groups (0.4% cells >1 nucleus; p<0.05).  Analysis by one-way ANOVA is 

reported in Figure 20.  For cells that we observed to have more than one nucleus, the 

nuclei remain near each other, sometimes touching, and are sometimes oriented along the 

different axes. 
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Figure 19. Quantification of CPCs with more than one nucleus.  CPCs were seeded on the 

appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. Two-way 

ANOVA, bars represent mean + SEM; n=3-9;  0-15: strain magnitude; PLL = poly-l-

lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived 

cardiac extracellular matrix. 
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Figure 20. Quantification of CPCs with more than one nucleus by one-way ANOVA.  

CPCs were seeded on the appropriate matrix for 6 hours and then cyclic strain was 

applied for 24 hours. (A) Matrix effects. (B) Strain magnitude effects. (A-B)  One-way 

ANOVA with Tukey’s multiple comparison test , bars represent mean + SEM; *p<0.05; 

n=3-9; 0-15: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN 

= fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

 

5.2.6.3 Calcium Oscillations 

To determine if culture of CPCs on distinct extracellular matrices altered their calcium 

handling, cultured cells were loaded with Fluo-4, electrically stimulated (1 Hz) and 

viewed under epifluorescence.  While rare, CPCs that paced with increasing stimulation 

frequency were observed as shown in Figure 44.  Calcium handling is a useful endpoint 
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as it is a better functional representation of cardiomyogenic maturation than qPCR.  Upon 

electrical stimulation, a marked increase in cytoplasmic calcium levels was observed on 

all matrices (data not shown).  As shown in Figure 21, the percent of active CPCs (cells 

with calcium oscillations) and the number of oscillation per active cell in 90 seconds was 

quantified for videos acquired after initial stimulation.  More active CPCs were observed 

after overnight culture on FN (54%; p<0.05), COL (60%; p<0.01) or cECM (55%; 

p<0.05) as compared to PLL (19%) by one-way ANOVA.  Similarly, the number of 

oscillations per active cell was increased on FN (1.5 osc; p<0.05), COL (1.4 osc; p<0.05) 

and cECM (1.4 osc; p<0.05) as compared to PLL (0.6 osc).  Intermediate levels of active 

CPCs (38%) and oscillations (1.1 osc) were observed on LN.  CPCs that had been 

strained could not be assessed by this method without enzymatic disruption due to the 

thickness of the PDMS Bioflex membranes and the working distance of the objective 

used. 
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Figure 21. Calcium Oscillations in CPCs.  CPCs were seeded on the appropriate matrix 

overnight.  Calcium oscillations were evaluated by Fluo-4. (A) Percent of active cells. (B) 

Average number of oscillations in time period;  (C) Representative traces of calcium 

oscillations: PLL (orange), LN (green), FN (purple), COL (blue), cECM (red); One-way 

ANOVA with Tukey’s multiple comparison test, bars represent mean + SEM; *p<0.05, 

**p<0.01;  n=5-6; PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN = 

fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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5.2.7 Paracrine Signaling 

To evaluate potential paracrine signaling, CPCs were seeded as described in the methods 

and conditioned media was collected after 24 hours.  Commercial ELISAs were 

performed for vascular endothelial growth factor A (VEGF), platelet-derived growth 

factor BB (PDGF), hepatocyte growth factor (HGF) and stem cell factor (SCF).  Neither 

PDGF nor SCF were detected in the conditioned media.  VEGF was detected in 

conditioned media on the order of hundreds of pg/mL and is observed to be matrix 

(p<0.05) and strain (p<0.001) dependent, without an interaction by two-way ANOVA.  

However, by one-way ANOVA, no differences in VEGF were detected in the media of 

CPCs cultured on different matrices for a given strain magnitude.  Summarized results 

are reported in Figure 22.  Conditioned media from CPCs cultured on PLL contained 

more VEGF at 5 (955 pg/mL) and 10% (998 pg/mL) strains as compared to the matrix-

matched unstrained group (515 pg/mL; p<0.05).  There was a marked difference in the 

presence of VEGF in conditioned media from CPCs cultured on LN in the presence of 5, 

10 and 15% (730, 729 and 699 pg/mL, respectively) strain as compared to unstrained 

groups (159 pg/mL; p<0.01).  Conditioned media from CPCs strained 10% (1048 pg/mL) 

on cECM also showed higher VEGF than unstrained controls (420 pg/mL; p<0.05).  

VEGF was also detected by qPCR (Figure 40).  As shown in Figure 23, HGF was 

detected in the conditioned media in smaller quantities (<10 ug/mL).  By two-way 

ANOVA, the presence of HGF is not observed to be matrix nor strain dependent.  

However, by one-way ANOVA strain increased HGF presence in conditioned media for 

CPCs cultured on PLL (0 v 10%: 1.5 v 7.3 pg/mL; p<0.01, 5 v 10%: 2.4 v 7.3 pg/mL; 

p<0.05).  The opposite was observed on FN (10 v 15%: 8.1 v 1.8 pg/mL; p<0.05) and 

COL (5 v 10%: 7.6 v 2.4 pg/mL; p<0.05), where increasing strain values demonstrated a 

drop in HGF in the media.  No effects are observed between matrix conditions for 

individual strain magnitudes by one-way ANOVA. 
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Figure 22. Concentration of VEGF in CPC conditioned media.  CPCs were seeded on the 

appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. 

Conditioned media was evaluated by ELISA; (A) Two-way ANOVA. (B) Matrix effects. 

(C) Strain magnitude effects. (B-C) One-way ANOVA with Tukey’s multiple 

comparison test, bars represent mean + SEM, *p<0.05;  n=3-4; 0-15: strain magnitude; 

VEGF =  vascular endothelial growth factor, PLL = poly-l-lysine, LN = laminin, COL = 

collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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Figure 23. Concentration of HGF in CPC conditioned media.  CPCs were seeded on the 

appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. 

Conditioned media was evaluated by ELISA. (A) Two-way ANOVA. (B) Matrix effects. 

(C) Strain magnitude effects. (B-C) One-way ANOVA with Tukey’s multiple 

comparison test, bars represent mean + SEM, *p<0.05; n=2-4; 0-15: strain magnitude; 

HGF = hepatocyte growth factor, PLL = poly-l-lysine, LN = laminin, COL = collagen I, 

FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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Additionally, the conditioned media was evaluated for the presence of inflammatory 

cytokines by luminex array for CPCs seeded on FN and cECM and strained either 5 or 

15% (Figure 24).  The sample size was too small to draw conclusions between groups, 

but the absence or presence of each cytokine was determined.  Interleukin 1alpha, 

interferon gamma and tumor necrosis factor alpha were below the detectable limit.  Small 

amounts (1-10 pg/mL) of interleukins -10, -6, -1b and -12 were detected.  Interestingly, 

monocyte chemotactic protein 1 was highly present in the media (>75,000 pg/mL). 
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Figure 24. Luminex Panel Results. CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. Conditioned media was evaluated 

for cytokines. (A) Grouped data. (B) Analysis summary. Two-way ANOVA, bars 

represent mean + SEM; n=3; 5-15 = strain magnitude, IL = interleukin, MCP = monocyte 

chemoattractant protein, FN = fibronectin, cECM = naturally-derived cardiac 

extracellular matrix. 

5.2.8 Cell Strain 

To offer insight into the mechanism by which changes are induced in this setup, the 

composite strain experienced by single cells was evaluated by video microscopy.  

Schematics for experimental set-up and data analysis are shown in Figure 25.  Unlike the 

Bioflex, the StageFlexer was unable to generate the programmed strains.  For a 5% 

programmed strain, the Flexcell reported generation of 3.5% strain; for 10% programmed 

strain, 7.0% generated strain was reported and for 15% programmed strain, 8.4% 

generated strain was reported on the StageFlexer.  These values are lower than the 4, 9 

and 14% strains reported, respectively, in the 6-well Bioflex format.  Cells oriented 
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parallel to the principle direction of strain were evaluated when possible to ensure a 

consistent and maximal strain was applied. 

 

 

Figure 25. Cell Strain Experimental Set-up. (A) Workstation. (B) Schematic. (C) 

Representative tracings from CPCs cultured on cECM; programmed strain is reported on 

graph. 

 

The slopes and y-intercepts for best-fit lines relating measured strain to reported strain 

were not different for matrix conditions.  By two-way ANOVA, measured strains were 

not dependent on matrix, but were highly strain-dependent (p<0.001), with no interaction.  

One-way ANOVAs were performed to examine the effect of matrix at each strain 

magnitude and revealed that measured strain was independent of matrix condition.  When 

each matrix condition was separately evaluated, the increase in measured strain was 

significant for LN (5 v 10% programmed: 4.0% v 7.7% measured; p<0.01), FN (5 v 10% 
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programmed: 3.8% v 7.7% measured; p<0.001) and cECM (5 v 10% programmed: 4.6% 

v 7.0% measured; p<0.05).  Interestingly, while there was an increase in measured strain 

from 5 to 15% programmed strain (4.6% v 7.6% measured) for cECM (p<0.01), there 

was a decrease in measured strain on FN (10 v 15% programmed: 7.6% v 4.9% 

measured; p<0.01) and a similar trend on LN.  For PLL, there was a trend toward 

increased measured strain at 10 and 15% relative to 5%.  For COL, there was larger 

variability in the data than for other matrices; however, there was a trend for increased 

measured strain at 10% relative to 5%.  Cell strain data is reported in Figure 26. 
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Figure 26. Cell Strain.  CPCs were seeded on the appropriate matrix for 6 hours.   

Videomicroscopy captured the motion of beads tethered to CPCs under cyclic strain. (A) 

Two-way ANOVA. (B) Matrix effects. (C) Strain magnitude effects. (B-C) One-way 
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ANOVA with Tukey’s multiple comparison test, bars represent mean + SEM, *p<0.05, 

p<0.01; n=3-10; 0-15: strain magnitude; PLL = poly-l-lysine, LN = laminin, COL = 

collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

5.2.9 Biochemical Mechanotransduction 

To establish if the matrix and strain conditions alter biochemical signaling through focal 

adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) as a potential 

means of mechanotransduction, cells were seeded as described in the methods and lysed 

at varying time points with NP-40 lysis buffer for Western blot analysis.  The presence of 

integrin beta1 was also evaluated by Western blot and qPCR. 

 

CPCs were seeded on each of the matrices and allowed to adhere for 20 minutes before 

lysis to evaluate the initial role of FAK and ERK in cell attachment and spreading.  In 

this time the cells were visibly adhered to the plates, but remained rounded.  FAK and 

ERK were both activated at this timepoint as determined by presence of phosphorylated 

FAK (pFAK) and ERK (pERK), but the effects were not dependent on matrix.  Cells in 

suspension were not evaluated, so it is unclear if the levels of pFAK and pERK observed 

indicate increased activation over basal conditions.  Next, CPCs were seeded as described 

above, allowed to adhere for 6 hours and then mechanically strained for 15 minutes, to 

evaluate if strain would further activate FAK and ERK.  By two-way ANOVA, the ratio 

of phosphorylated to total FAK was matrix (p<0.05), but not strain dependent and there 

was no observed interaction.  Representative blots and quantification is shown in Figure 

27.  Including the initial adhesion data in this analysis, there were no significant changes 

observed for pFAK/FAK across matrices or strain magnitudes by one-way ANOVA.  

Analysis by one-way ANOVA is reported in Figure 28.  This indicates that FAK 

signaling was maintained, but not increased by strain.   
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Figure 27. Acute FAK activation in CPCs.  CPCs were seeded on the appropriate matrix 

for 20 minutes (hash bars) and lysed or 6 hours followed by 15 minutes of cyclic strain 

and lysed. Cell lysate was evaluated by Western. (A) Quantification by densitometry; 

Two-way ANOVA, bars represent mean + SEM; (B) Representative blots. n=4-5; 0-15: 

strain magnitude; FAK = focal adhesion kinase, PLL = poly-l-lysine, LN = laminin, COL 

= collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 
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Figure 28. Acute FAK activation in CPCs assessed by one-way ANOVA. CPCs were 

seeded on the appropriate matrix for 20 minutes (hash bars) and lysed or 6 hours 

followed by 15 minutes of cyclic strain and lysed. Cell lysate was evaluated by Western. 

(A) Matrix effects. (B) Strain magnitude effects. (A-B)  One-way ANOVA with Tukey’s 

multiple comparison test, bars represent mean + SEM; n=4-5; 0-15: strain magnitude; 

FAK = focal adhesion kinase, PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN 

= fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

 

 

Similarly as shown in Figure 29, by two-way ANOVA, the ratio of phosphorylated to 

total ERK was matrix (<0.001), but not strain dependent with an observed interaction 
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(p<0.05).  Further analysis by one-way ANOVA for individual strain or matrix groups 

showed matrix-dependent effects were more prominent for unstrained and 5% strain 

groups.  Results are reported in Figure 30.  For unstrained CPCs, pERK/ERK was 

greatest on PLL (1.8-fold) and COL (1.8-fold), although these groups were not 

statistically different from cECM (1.3-fold).  Nearly twice the phosphorylation was 

observed for unstrained CPCs on PLL and COL as compared to LN (1.0-fold; p<0.05) or 

FN (0.8-fold; p<0.05).  At 5% strain however, the highest pERK/ERK was observed for 

PLL (1.9-fold) and cECM (1.8-fold), although these groups again were not statistically 

different from COL (1.1-fold).  Twice the phosphorylation was observed for PLL and 

cECM as compared to LN (0.9-fold; p<0.05) and FN (0.8-fold; p<0.05).  The pERK/ERK 

ratio does not have a matrix-dependent effect at 10% and at 15% the phosphorylation 

observed for cECM (1.8-fold) only is 2.3-fold greater than FN (0.8-fold; p<0.05).  Within 

each matrix, strain did not have a significant effect on ERK phosphorylation. 
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Figure 29. Acute ERK activation in CPCs.  CPCs were seeded on the appropriate matrix 

for 20 minutes (hash bars) and lysed or 6 hours followed by 15 minutes of cyclic strain 

and lysed. Cell lysate was evaluated by Western. (A) Quantification by densitometry; 

Two-way ANOVA, bars represent mean + SEM; (B) Representative blots. n=4-5; 0-15: 

strain magnitude; ERK = extracellular signal-regulated kinase, PLL = poly-l-lysine, LN = 

laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived cardiac 

extracellular matrix. 
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Figure 30. Acute ERK activation in CPCs assessed by one-way ANOVA. CPCs were 

seeded on the appropriate matrix for 20 minutes (hash bars) and lysed or 6 hours 

followed by 15 minutes of cyclic strain and lysed. Cell lysate was evaluated by Western. 

(A) Matrix effects. (B) Strain magnitude effects. (A-B) One-way ANOVA with Tukey’s 

multiple comparison test, bars represent mean + SEM; *p<0.05; n=4-5; 0-15: strain 

magnitude; ERK = extracellular signal-regulated kinase, PLL = poly-l-lysine, LN = 

laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived cardiac 

extracellular matrix. 
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To determine if this signaling was transient or maintained throughout the length of this 

study, lysate was again collected at 24 hours.  In line with the shorter time points, 

phosphorylation of FAK was matrix (p<0.01), but not strain dependent as determined by 

two-way ANOVA (no interaction).  Representative blots and results are shown in Figure 

31.  For unstrained CPCs, the pFAK/FAK ratio was not affected by matrix condition.  At 

5% strain, there was twice as much pFAK/FAK for CPCs on FN (0.9-fold) as compared 

to cECM (0.4-fold; p<0.05).  At 10% strain, pFAK/FAK was two-fold higher on FN (1.1-

fold) than PLL (0.4-fold; p<0.01), LN (0.5-fold; p<0.05) and cECM (0.6-fold; p<0.05), 

but not different than COL (1.0-fold).  COL had twice the pFAK/FAK as compared to 

PLL (p<0.05).  These effects were diminished at 15% strain.  Strain did not affect 

pFAK/FAK for any matrix conditions except for cECM, where there was a decrease at 5 

and 15% (both 0.4-fold) strains as compared to unstrained CPCs (0.8-fold; p<0.05).  

Analysis by one-way ANOVA is reported in Figure 32.  Phophorylation of ERK was not 

evaluated at this timepoint.  As the amount of available FAK might affect its activation, 

total FAK protein levels were evaluated at 24 hours.  The levels of FAK were unchanged 

across groups except for a spike in unstrained CPCs cultured on LN (0.9-fold over 

GAPDH) as compared to PLL (0.5-fold) and FN (0.5-fold; p<0.05).  Analysis of FAK 

expression by two-way ANOVA and one-way ANOVA are reported in Figure 33 and 

Figure 34, respectively. 
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Figure 31. FAK activation in CPCs.  CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. Cell lysate was evaluated by 

Western. (A) Quantification by densitometry; Two-way ANOVA, bars represent mean + 

SEM; (B) Representative blots. n=4-6; 0-15: strain magnitude; FAK = focal adhesion 

kinase, PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = 

naturally-derived cardiac extracellular matrix. 
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Figure 32. FAK activation in CPCs assessed by one-way ANOVA. CPCs were seeded on 

the appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. Cell 

lysate was evaluated by Western. (A) Matrix effects. (B) Strain magnitude effects. (A-B) 

One-way ANOVA with Tukey’s multiple comparison test, bars represent mean + SEM; 

*p<0.05, **p<0.01; n=4-5; 0-15: strain magnitude; FAK = focal adhesion kinase, PLL = 

poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-

derived cardiac extracellular matrix.  
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Figure 33. FAK expression in CPCs.  CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. Cell lysate was evaluated by 

Western. (A) Quantification by densitometry; Two-way ANOVA, bars represent mean + 

SEM. (B) Representative blots. n=4-6; 0-15: strain magnitude; FAK = focal adhesion 

kinase, PLL = poly-l-lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = 

naturally-derived cardiac extracellular matrix. 
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Figure 34. FAK expression in CPCs assessed by one-way ANOVA. CPCs were seeded 

on the appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. Cell 

lysate was evaluated by Western. (A) Matrix effects. (B) Strain magnitude effects. (A-B) 

One-way ANOVA with Tukey’s multiple comparison test, bars represent mean + SEM; 

*p<0.05; n=4-6; 0-15: strain magnitude; FAK = focal adhesion kinase, PLL = poly-l-

lysine, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived 

cardiac extracellular matrix.  
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As shown in Figure 35, flow cytometry showed that 99% of CPCs basally express the 

integrin beta1 subunit.  By qPCR, the most prominent integrin subunits detected in CPCs 

in descending order are: beta1, alphaV, alpha5, alpha3, beta3, alphaE, alpha4, beta4 and 

alphaL.  As FAK activity is linked to integrins, total levels of the beta1 integrin subunit 

were evaluated at 24 hours of cyclic strain.  By two-way ANOVA, beta1 integrin 

expression as evaluated by Western was matrix (p<0.001), but not strain dependent, with 

no interaction.  Results of the two-way ANOVA analysis are shown in Figure 36.  At 

10% strain, LN (1.9-fold over GAPDH) showed the highest integrin beta1 expression and 

had twice the levels of CPCs cultured on cECM (0.9-fold; p<0.05).  No other significant 

changes were observed.  Analysis by one-way ANOVA is shown in Figure 34.  The 

sample size for qPCR data was too small to draw conclusions (Figure 40).  Previously, in 

standard tissue polystyrene culture plates, we showed that the beta1 integrin subunit was 

equally activated on LN (1.5-fold over total beta1 integrin), FN (1.0-fold), COL (0.9-

fold) and cECM (1.1-fold) and that this activation was significantly higher than CPCs in 

suspension (Ctrl, 0.4-fold).  Activity on PLL was not evaluated.  Beta1 integrin activity is 

reported in Figure 35.  This antibody did not detect activity in strained signals, although it 

is difficult rule out the possibility of activation of the beta1 integrin. 
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Figure 35. Integrins in CPCs. (A) Relative basal integrin subunit expression was 

determined by qPCR array. (B) flow cytrometric analysis of basal beta1 integrin 

expression in CPCs; red = control, blue = ITG1. (C) Activity of integrin beta1 subunit 

by Western blot; One-way ANOVA with Tukey’s multiple comparison test, bars 

represent mean + SEM; *p<0.05, ***p<0.001; 0-15: strain magnitude; ITGb1= integrin 

beta1, LN = laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived 

cardiac extracellular matrix.  
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Figure 36. ITG1 expression in CPCs.  CPCs were seeded on the appropriate matrix for 6 

hours and then cyclic strain was applied for 24 hours. Cell lysate was evaluated by 

Western. (A) Quantification by densitometry; Two-way ANOVA, bars represent mean + 

SEM; (B) Representative blots. n=4-5; 0-15: strain magnitude; ITGb1= integrin beta1, 

GAPDH = Glyceraldehyde-3-phosphate dehydrogenase, PLL = poly-l-lysine, LN = 

laminin, COL = collagen I, FN = fibronectin, cECM = naturally-derived cardiac 

extracellular matrix. 
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Figure 37. ITGb1 expression in CPCs assessed by one-way ANOVA. CPCs were seeded 

on the appropriate matrix for 6 hours and then cyclic strain was applied for 24 hours. Cell 

lysate was evaluated by Western. (A) Matrix effects. (B) Strain magnitude effects. (A-B) 

One-way ANOVA with Tukey’s multiple comparison test, bars represent mean + SEM; 

*p<0.05; n=4-5; 0-15: strain magnitude; ITGb1= integrin beta1, GAPDH = 

Glyceraldehyde-3-phosphate dehydrogenase, PLL = poly-l-lysine, LN = laminin, COL = 

collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix.  

 

5.3 Discussion 

The myocardium is composed of a complex array of microenvironments that change 

throughout development, aging and disease progression.  Young myocardium is 

composed of high amounts of laminin, collagen and fibronectin [21].  With increasing 

age, the matrix profile shifts, with increases in collagens I and III and laminin and 
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decreases in fibronectin.  Myocardial infarction (MI) is the most prevalent form of 

coronary heart disease, a major contributor to the leading cause of death in the United 

States [1].  Post-MI, there is an acute decrease in collagen I, followed by increased in 

collagen I and fibronectin.  This is an over-simplification as the myocardium also 

contains collagen II-VI, elastin, fibrinogen and many proteoglycans and glycoproteins 

[21].  Protein content alone insufficiently describes the myocardium as changes in 

crosslinking of the proteins also occur with age and disease [12, 16].  Furthermore, 

integrins expressed by cardiac cell types have been shown to change with age and disease 

indicating that the relationship between cells and their extracellular environment are 

dynamic [20].  Additionally, the stiffness of the myocardium and strain of endogenous 

cells is dependent on developmental and disease state.  Strains in the developing and 

healthy adult hearts are globally 18% [32].  Strain decreases post-MI, due initially to loss 

of myocyte contractility and later to scar development.  Stiffness of the myocardium is 

globally 15 kPa in healthy hearts and increases to 55-90 kPa after infarct formation [26].  

This assessment of extracellular matrix components and biomechanical input treats the 

myocardium as a homogeneous tissue; however strain in the myocardium changes 

longitudinally, circumferentially and radially, with associated changes in matrix structure 

and likely composition.  Furthermore, endogenous CPCs are known to exist in niches, 

particularly in areas of lower tissue strain [60, 64].  Matrix composition of these niches is 

believed to be high in laminin and fibronectin [62, 64, 172].  It is unknown how the 

mechanical forces of the myocardium are propagated throughout niches.  Two large 

questions surround cardiac regeneration with CPCs.  First, how can endogenous CPCs be 

activated?  Second, what is the optimal microenvironment for CPC cardiomyogenic 

differentiation and maturation?  Addressing these questions has the potential to inform 

studies aimed at activating endogeneous CPCs, understanding how to best expand and 

pre-condition CPCs before delivery and deciding on the choice of delivery vehicle. Thus, 

it is important to understand how CPC interact with their micronenvironment.  
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In order to improve myocardium regeneration an increase in the number of 

stem/progenitor cells available is an important first step, followed by either maturation of 

these cells into the desired cell types, increased paracrine signaling to salvage surviving 

cells, altering the immune response and remodeling, recruitment of endogenous 

stem/progenitor cells for repair or a combination of the above.  In order to assess how 

culture conditions, specifically matrix composition and the application of mechanical 

strain, alter the proliferation and maturation of CPCs we examined these conditions in a 

combinatorial fashion.  Strains of 5%, 10% and 15% were examined in addition to 

unstrained (0%) controls.  Furthermore, five matrix conditions were evaluated: poly-L-

lysine (PLL), laminin (LN), fibronectin (FN), collagen I (COL) and naturally-derived 

cardiac extracellular matrix (cECM).  The results (summarized in Error! Reference 

source not found.) are discussed as phenotypic changes, proliferation and maturation, 

paracrine signaling and potential mechanisms for the effects observed. 
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Figure 38 Aim 2 Results Summary 

 

Alignment of cells within a tissue facilitates electrical and mechanical propagation.  

Strain has been shown to induce cell alignment in a variety of cell types [112, 127, 137, 

161].  Although induced by strain, alignment alone-independent of mechanical strain- has 

also been shown to improve mesenchymal stem cells (MSCs) cardiomyogenic 

differentiation and the potential for cells to integrate in host myocardium [108-111].  To 

evaluate if strain induced alignment, cells from each culture condition were evaluated by 

immunocytochemistry.  We observed CPC alignment with the application of mechanical 

strain.  This effect was matrix specific, with COL aligning the cells more robustly with 

3.0-fold more alignment as compared to PLL at 5, 10 and 15% strains.  At 15% strain, 

CPCs also align 2.8-fold more robustly on FN than PLL.  While not examined in this 

study, matrix-dependent changes in alignment may be due to differential binding of CPCs 

to extracellular matrix components and mechanotransduction through integrins.  
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Alignment of CPCs did not increase with the application of strain when cultured on PLL.  

When cultured on LN, strain induced a 2.3-fold increase in alignment for cells strained 

15% as compared to unstrained cells.  This effect was smaller than that observed on the 

other matrices, suggesting either a lack of mechanotransduction or differences in the 

mechanotranduction pathway that are activated.  CPCs cultured on cECM, FN or COL 

had 3 to 4-fold increases in alignment with mechanical strain.  Interestingly, alignment 

values did not differ with increasing magnitudes of strain within a single matrix group, 

suggesting the application of any strain >5% is enough to achieve alignment.  In 

preliminary studies, we had seeded cells at approximately half the density and 

functionalize the surfaces with 10-fold more matrix.  In those studies, we also observed 

an increase in alignment with the application of strain, which was not different between 

the two groups examined, COL and cECM, at 10%.  We did not thoroughly evaluate if 

increasing the concentration of the matrix used to functionalize the plates actually 

resulted in increased matrix tethered to the surface and thus cannot comment specifically 

on ligand density differences.  While we cannot directly compare results from these 

experiments, it appears as if there is less alignment on COL at this higher matrix 

concentration, while CPCs on cECM align similarly on each.  It would be interesting to 

study the effect of ligand density on CPC phenotype in response to mechanical strain in 

future studies.   

 

In the current study, spread area describes the interaction of CPCs with the underlying 

substrate.  Increases in spread area are an indication that cells are interacting more with 

their environment and could lead to changes in cells shape.  Cell shape is known to 

induce variable differentiation protocols [145, 241], while in MSCs roundness maintains 

multipotency [145].  The size, as evaluated by spread area, of the CPCs in our study 

mimics that of neonatal cardiomyocytes and embryonic stem cell-derived cardiomyocytes 

[100, 106].  The spreading of CPCs on each culture condition was matrix, but not strain, 
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dependent.  At 0-10% strain, CPCs seeded on FN or COL were generally more spread 

than those on PLL.  CPCs on LN were about as spread as those on PLL.  Intermediate 

spreading of CPCs on cECM was observed.  In mesenchymal stem cells, reduced 

adhesion improved maintenance of pluripotency, while still allowing for proliferation 

[145].  Spread area is not a direct measurement of adhesion, but suggests that CPCs on 

LN and PLL might have fewer cell-ECM contacts as they are more rounded.  CPCs on 

these matrices also do not align as well, suggesting that they are less likely to contribute 

to CPC differentiation and maturation than FN, COL or cECM.  In addition to spread 

area, cell shape was also evaluated by calculating the aspect ratio of the CPCs.  While 

small changes were observed, primarily due to matrix conditions, the CPCs had aspect 

ratios of 1.5:1 to 2:1 for all culture conditions.  This indicates that the cells are more 

round than neonatal rat ventricular myocytes and MSC-derived cardiomyocytes with 

aspect ratios of 4:1 and adult cardiomyocytes (7:1) [48, 98, 109, 242].  Given the size and 

shape of the CPCs alone, they phenotypically represent an immature cardiomyocyte.  

Culturing CPCs on a stiffer substrate or nanopatterned surface may help to increase their 

aspect ratio.  This study does not directly link cell shape to differentiation or maturation; 

but these results do suggest that the CPCs phenotypically respond differently to each 

matrix, opening them to the possibility of further changes.  Additionally, mechanical 

strain induces hypertrophy in more mature cardiomyocytes by effecting growth cycles.  

The size of the CPCs in our study mimics that of neonatal cardiomyocytes, while adult 

cardiomyocytes are typically larger.  At longer timepoints, as CPCs differentiate toward 

cardiomyocytes, the application of mechanical strain may increase the size of CPCs and 

this could be considered in future work.   

 

Proliferation of CPCs contributes to an increase in the number of available cells.  We 

evaluate the number of dividing cells at the time of fixation.  Dividing cells were detected 

even though the CPCs were cultured in the absence of serum for 30 hours.  At maximum, 
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2.7% of CPCs were dividing for a given culture condition (FN, 5%).  This is 270-fold 

greater than the minimum detected number of dividing cells, 0.01%, for PLL at 0%.  

Given that 4x10
5
 cells were initially seeded, and assuming that no cells were lost in 

culture and that each division event accounts for the formation of one new cell, this 

would account for 10,800 new cells formed on FN at 5% compared to 40 on PLL at 0%.  

Similarly, CPCs seeded on FN and strained 5%, were 5.4 times more proliferative than 

those seeded on LN and unstrained.  For lower strains (0 and 5%) the matrix coating had 

a greater effect on proliferation.  At higher strains (10 and 15%) proliferation was matrix-

independent, suggesting that mechanical inputs may override the effect of the matrix.  

The proliferative capacity of CPCs is likely under estimated by this method since it only 

captures dividing cells at a single timepoint.  Furthermore, we evaluate the number of 

dividing cells by phenotype alone.  Immunocytochemistry for proliferation markers, such 

as Ki67 or aurora B kinase, are necessary for further confirmation.  Alternatively, the 

total number of cells could be counted at a later timepoint as performed in Aim I.  

Population doubling times account for the total accumulation of proliferating cells in a 

given time period.  Reported CPC doubling times in the presence of serum are ~31 hours 

[68].  Survival of CPCs was not evaluated in our study, but apoptosis would lead to 

decrease in the number of available cells. 

 

There are two methods by which CPCs can effectively contribute to regeneration: direct 

differentiation and maturation or paracrine signaling.  While CPCs can form endothelial 

cells, smooth muscle cells, cardiomyocytes or fibroblasts, here we examine the role of 

culture condition on cardiomyogenic differentiation.  We assess cardiomyogenic 

differentiation by levels of early cardiac markers gata-4, nkx2.5, troponinC1 and 

troponinT2 by qPCR, and also evaluate gap junction component connexin 43 (Cnx43) by 

qPCR and Western, as well as phenotype.  While there appear to be promising matrix-

dependent differences in gata-4, troponinC1 and troponinT2 by qPCR, the sample size is 
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too small to draw conclusions and will be repeated.  Literature shows that stretching 

cardiomyocytes increases Cnx43 expression [218].  Cnx43, aside from electrical 

propagation [125], has been linked to cell survival and proliferation [238] [239].  By 

Western, we show that for unstrained CPCs, Cnx43 expression is 40-50% higher on FN 

than PLL, LN or cECM.  At 5% strain FN shows twice the Cnx43 expression as 

compared to PLL at 5%.  At higher strains, Cnx43 is not matrix-dependent, suggesting 

that biomechanical inputs may supersede biochemical inputs.  For CPCs cultured on COL 

and cECM, higher levels of strain resulted in 20-50% decrease in Cnx43 expression.  The 

largest difference in Cnx43 expression is seen between unstrained CPCs on FN and CPCs 

cultured on cECM with 15% strain, resulting in 3-fold more Cnx43 on FN, 0% condition.  

This fits literature results that show Cnx43 expression is highest in neonatal rat 

ventricular myocytes cultured on fibronectin, although that particular study only 

compared FN to COL and we do not see significant changes between FN and COL in our 

cells [84].  Our qPCR results for Cnx43 expression do not show any differences in 

transcript levels, although are under powered and will be repeated.  While expression 

alone is not proof of functional gap junction formation, increased Cnx43 expression 

suggests that the cells are better primed for functional gap junction formation and 

electrical propagation.   

 

In vivo, maturation of myocytes is marked, in part, by their inability to undergo 

cytokinesis [99].  Myocytes that undergo karyokinesis that is not followed by cytokinesis 

result in multinucleated cells.  In this study, CPCs that appear to have more than one 

nucleus were identified.  While these cells do not phenotypically look like adult 

myocytes, their nucleation pattern is reminiscent of cultured neonatal rat ventricular 

myocytes [243, 244].  Less than 1% of all CPCs in our study had more than one nucleus, 

but significant strain-dependent changes were observed.  On FN, 3-fold more cells 

(1.2%) with more than one nucleus at 5% strain than 15% strain (0.4%).  The number of 



www.manaraa.com

 103 

CPCs with more than one nucleus was also 2.5-fold higher on COL at 5% as compared to 

0%.  Matrix conditions did not affect the number of cells containing more than one 

nucleus.  To confirm that CPCs that appear to contain more than one nucleus are truly 

binucleated, further immunocytochemistry is necessary.  For this, a four color stain is 

necessary to show total nuclei, actively dividing nuclei, cytoskeletal protein such as f-

actin or beta-tubulin to show continuity or reorganization of the cytoskeleton and septins 

as a marker for karyokinesis.  This would allow cells undergoing karyokinesis, without 

cytokinesis to be identified.  Additionally, the number of CPCs with more than one 

nucleus could be evaluated in a long-term culture to establish if these binucleated cells 

accumulate over time, or if it is a transient phenotype. 

 

CPCs spontaneously oscillate calcium [235, 236].  By genetically engineering CPCs, 

myocyte-like transients can be achieved [237].  Calcium oscillations serve as an 

indication of cardiomyogenic maturation and increase cell proliferation [235, 236].  Due 

to the constraints of our microscope, we were unable to evaluate calcium oscillations in 

strained CPCs without enzymatically disrupting them from the Bioflex plates.  Instead, 

CPCs were cultured on each of the matrices overnight on glass coverslips and then 

assessed for calcium handling.  Electrically-stimulating the CPCs increased the number 

of oscillations 25-fold over literature values, which observed 1.4 spontaneous oscillations 

(no electrical stimulation) per active cell in 33 minutes [236].  A 2.8-fold increase in the 

number of active CPCs and a 2.3-fold increase in the number of oscillations per active 

cells were observed for CPCs cultured on FN, COL or cECM as compared to PLL.  This 

increase may be due to the morphology or clustering of CPCs on each matrix or changes 

in calcium handling proteins.  Western blots analysis can be used to distinguish these 

mechanisms and to further evaluate the effects of strain on the expression of these 

proteins.  CPCs cultured on LN had intermediate values of activity.  By t-test of 

individual groups, the number of oscillations per cell was higher on FN, COL and cECM 
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than LN.  LN was not statistically different than PLL.  This suggests than LN, a niche 

protein, may maintain CPCs in a quiescent state.  Activation of calcium oscillation leads 

to proliferation and asymmetric cells division, which may induce a CPC to migrate from 

the niche and mature [236]. 

 

Paracrine signaling of CPCs may also contribute to their regenerative potential, through 

recruitment of progenitor cells, differentiation of endogenous progenitor cells or survival 

of endogenous cells.  To assess the potential for paracrine signaling, ELISAs were 

performed on conditioned media collected from CPCs in each of the culture conditions.  

No stem cell factor (SCF) or platelet-derived growth factor BB (PDGF) was detected in 

the conditioned media.  SCF is a stem cell chemoattractant and is responsible for 

maintenance of haematopoietic stem cells [245-247].  Absence of SCF from the media 

might suggest that progenitor cells would not be recruited in an in vivo environment and 

present progenitor cells may be released from maintenance-protocols.  PDGF has been 

shown to induce proliferation, migration and angiogenesis [248, 249].  Absence of PDGF 

from the media might suggest that the CPCs would not stimulate angiogenesis in an in 

vivo environment.  Interestingly, both of these cytokines were previously detected in 

conditioned media collected from CPCs in our lab.  Opposed to this study however, those 

CPCs were encapsulated in a three-dimensional hydrogel and cytokine levels were 

increased by Notch activation [250].  Interestingly, in the previously evaluated three-

dimensional system vascular endothelial growth factor A (VEGF) was not detected, but it 

is robustly detected in the conditioned media in this study.  In fact, VEGF presence in the 

media is matrix and strain dependent.  Conditioned media from CPCs cultured on PLL 

contained 2-fold more VEGF for cells strained either 5 or 10% as compared to unstrained 

cells.  The effect was similar for cells cultured on cECM, with 2.5-fold as much VEGF in 

the conditioned media for cells strained 10% as compared to unstrained cells.  The effect 

was even larger on LN, with a 4.5-fold increase in VEGF for cells strained 5, 10 or 15% 
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as compared to unstrained controls.  No effect of strain on VEGF concentration was 

observed for FN or COL.  Strain induces VEGF secretion in a variety of cell types, 

including cardiomyoctytes, MSCs and embryonic stem cells [125-127, 138, 217-219, 

234].  Studies that examined VEGF secretion from MSCs on various matrix proteins, 

showed no secretion on FN and less on COL relative LN, in line with our study [135, 

138].  VEGF is known for its regulation of angiogenesis, but has also been shown to act 

through paracrine and autocrine effects to increase Cnx43 expression in myocytes to 

similar levels as achieved by strain [84, 217].  While beyond the scope of this study, it is 

possible that VEGF regulates CPC function in an autocrine fashion, as these cells contain 

low levels of VEGF receptor.  Matrices that induce strain-dependent increases in VEGF 

concentration (PLL and LN) show maintained Cnx43 levels with increasing strain.  On 

COL, there is no strain-induced VEGF increase in the media and Cnx43 levels are not 

maintained with increasing strain.  These correlations do not extend to FN and cECM.  

However, FN is known to contain binding domains for both VEGF and HGF [90], so it is 

possible that VEGF is secreted by the CPCs, but sequestered by FN.  This could further 

lead to positioning of the growth factor for CPC stimulation and Cnx43 expression, but 

this correlation is speculative.  As the ELISA only measures current VEGF in the 

conditioned media, qPCR was performed to determine if the CPCs are producing new 

VEGF.  However the results are inconclusive due to a small sample size and need to be 

repeated.  Additionally, since CPCs express some level of VEGF receptor, the ELISA 

would not measure any VEGF bound to the cells, which may vary with strain condition.  

Hepatocyte growth factor (HGF) plays a role in cell proliferation, migration, survival and 

angiogenesis [172, 251].  HGF concentration in the conditioned media from CPCs 

cultured on PLL increased 4.9-fold on 10% strain as compared to 0% and 3-fold as 

compared to 5%.  However on FN, there was a 75% decrease in HGF from 10 to 15% 

strain.  The same occurred on COL, with a 68% decrease in HGF measured from 5 to 

10% strain.  Cardiac stem cells have previously been shown to secrete HGF, although at 



www.manaraa.com

 106 

an order to magnitude higher than that detected here [61, 62, 64].  Strain did not have an 

effect on HGF secretion from human cardiosphere-derived cells or MSCs [127, 135].  

Even though statistical changes in HGF secretion are observed, it is unclear if it will have 

a biological effect at such low (<10 pg/mL) levels.  Urbanek et al. evaluated HGF 

secretion within 2 hours of treatment, so it is possible that HGF secretion occurs early 

and that secreted HGF was degraded by extracellular protease by 24 hours [172].  For the 

evaluated inflammatory cytokines, levels were very low with the exception of monocyte 

chemoattractant 1 (MCP-1).  Although the role of MCP-1 is not well studied in CPCs, it 

has been shown to also be secreted from cardiosphere-derived cells [234].  Additionally, 

in a murine model, overexpression of MCP-1 was cardioprotective after MI [252].   

 

In order to further interpret the above results, we wanted to determine if CPCs seeded on 

each matrix were strained to the same degree for a given applied strain.  It is important to 

note that a different device, the StageFlexer, was used in this experiment than the rest of 

experiments.  This resulted in lower reported strains for each programmed strain and thus 

does not recapitulate the conditions used in the rest of the study.  However, it does allow 

for comparison between strain and matrix groups on the same device.  For programmed 

strains of 5%, a 3.5% strain was reported by the Flexcell and strains of 3.8-6.3% were 

measured.  For programmed strains of 10%, a 7% strain was reported and strains of 6.6-

7.6% were measured.   For programmed strains of 15%, an 8.4% strain was reported and 

strains of 5.0-7.9% were measured.   No differences were observed between matrix 

conditions for a given strain.  For the lowest strain groups, some variability may be 

induced by measuring such small changes.  At 10% programmed strain, the measured 

strains track well with reported values, supporting the validity of this method.  However, 

for the highest strain group there is a wide range of reported strains, some lower than 

expected.  For PLL (trend), LN, FN, COL (trend) and cECM the measured strain 

significantly increased at programmed 5 and 10% strains, suggesting that we are able to 



www.manaraa.com

 107 

achieve conditions of increasing strain.  For CPCs seeded on FN, a lower strain is 

measured at 15% than 10% programmed strain.  A similar trend is observed on LN.  This 

is particularly interesting because the reported strain values differ by such a small amount 

(an absolute 1.4%).  While it is possible that error was introduced at this strain magnitude 

by larger translation (and blurring) of the cells, given the distribution of measured strains 

it does not sufficiently explain the lower observed strain.  Thus this effect may be due to 

increased cytoplasmic stiffening at short time scales or slippage of the CPCs from the 

matrix.  Regardless of the effect, it is likely that it is exacerbated in our experiments 

where the change in reported strain is even larger between the 10 and 15% programmed 

strains (an absolute 5%).   

 

Integrins link the cytoplasm to extracellular matrix components and are largely 

responsible for transducing mechanical signals from the microenvironment into 

biochemical intracellular signals.  Focal adhesion kinase (FAK) associates with the 

cytoplasmic domain of integrins and is activated by phosphorylation.  The extracellular 

signal-regulated kinase (ERK) is downstream of several signaling cascades including 

FAK and VEGF, and is also activated by phosphorylation [151, 253].  To establish 

activity of FAK and ERK by binding of CPCs to the extracellular matrix, Western blot 

was performed after allowing cells to adhere for 20 minutes.  Phosphorylated FAK and 

ERK were both detected, suggesting adhesion alone is sufficient to activate this pathway.  

Mechanical stimulation may further activate FAK and ERK, as the application of strain to 

various cell types and culture conditions lead to increased pFAK and pERK within as 

little as 5 minutes of strain and is sustained for 1-4 hours [135, 222-226].  To determine if 

strain further activates FAK and ERK, CPCs were allowed to adhere to the appropriate 

matrix for 6 hours and then cyclic strain of 0-15% was applied for 15 minutes.  No 

further activation of FAK was observed for any matrix or strain conditions.  However, 

matrix-dependent changes in pERK were detected.  In unstrained CPCs, PLL and COL 
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demonstrated 2-fold activation of ERK as compared to FN and LN, with moderate 

activation of ERK on cECM.  Similarly, at 5% strain, CPCs on PLL and cECM showed 

2-fold activation of ERK as compared to FN and LN, with moderate activation of ERK 

on COL.  At 15% strain CPCs cultured on cECM had 2.3-fold ERK activation as 

compared to FN.  These results are interesting because they do not parallel FAK 

activation, suggesting crosstalk between signaling pathways.  Furthermore, ERK 

activation is required for VEGF production [254, 255].  In our study, pERK is typically 

highest on PLL, COL and cECM, while we also observed strain-dependent increases in 

VEGF in conditioned media of CPCs cultured on PLL, LN and cECM.  While not a 

perfect correlation, it suggests that biochemical signaling within the cell is complex.  We 

did not measure VEGF in the conditioned media at this timepoint, but through autocrine 

signaling, VEGF could also contribute to ERK activation. 

 

Cell alignment is achieved by 24 hours, potentially through mechanotransduction 

pathways.  To ascertain if FAK is still active at these time points, lysate was collected 

and evaluated by Western.  Similar to the shorter time points, pFAK/FAK was dependent 

on matrix, but not strain.  FAK activation on FN was maintained at 24 hours, with 2-fold 

higher pFAK/FAK at 5% for FN than cECM and at least 2-fold higher pFAK/FAK at 

10% for FN than PLL, LN and cECM.  For cECM alone, strain reduced the pFAK/FAK 

ratio 2-fold at 5 and 15% relative to unstrained CPCs.  It is important to note that while 

the ratios of FAK activation vary, activation was still detected to some extent in all 

groups.  This suggests that the CPCs are still engaging with the microenvironment and 

that further changes in cell phenotype may be observed at later timepoints, especially for 

CPCs cultured on FN.  It has previously been shown that FAK was not activated in cells 

cultured on PLL as they adhere to PLL through ionic interactions instead of integrins 

[215, 222].  Surprisingly, we observe phosphorylation of FAK in CPCs cultured on PLL.  

This could be due to inside-out signaling, where FAK activation primes cells to bind to 
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extracellular matrix.  Alternatively, we cannot rule out the accumulation of matrix 

proteins on the functionalized surface, and thus integrin activation, even though the 

PDMS is hydrophobic and the functionalization reaction was quenched.  Activation of 

ERK was not evaluated at this timepoint as alignment has already been achieved and the 

presence of VEGF in the media would confound the results.  In addition to FAK 

activation, total levels of FAK were evaluated and interestingly, there was a 1.8-fold 

increase in total FAK protein levels at 24 hours for CPCs cultured on LN as compared to 

PLL and FN.  While different than our system, De Lisio et al. also observed matrix 

dependent changes in total FAK and pFAK levels [135].  This increase in total FAK, 

would contribute to lower pFAK/FAK ratios on LN and additionally could be a result of 

the CPCs on LN trying to probe their microenvironment.  Localization of FAK was not 

evaluated in this study, but could be important to consider in future studies as FAK 

clusters in focal adhesion and binds other cytoplasmic proteins in response to mechanical 

stimulation [145, 164, 218].  To further evaluate if the CPCs are remodeling their 

mechanotransduction machinery, we evaluated total levels of the beta1 integrin subunit.  

As shown by qPCR and flow cytometry, CPCs basally express the beta1 integrin.  At 

10% strain, CPCs cultured on LN expressed 2-fold more beta1 integrin than on cECM.  

This further suggests that CPCs cultured on LN are probing for microenvironmental 

signals, perhaps because these pathways are not being stimulated.  While the CPCs 

express the beta1 integrin subunit, individual alpha subunits were not evaluated in treated 

cells.  We have shown that culture of CPCs on LN, FN, COL and cECM activates the 

beta1 integrin to similar levels over cells that were maintained in suspension.  The pairing 

of an alpha subunit with a beta subunit determines the binding affinity for a particular 

extracellular matrix protein.  To further elucidate the mechanotransduction pathways 

activated in CPCs, integrin alpha subunits would need to be evaluated. 
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CHAPTER 6  LIMITATIONS AND FUTURE DIRECTIONS  

6.1 Cardiovascular Disease 

Cardiovascular disease is the leading cause of death in the United States. There were an 

estimated 1.5 million cases of myocardial infarction (MI) in 2011 [256].    Following MI 

in animal models, there is a 40-60% reduction in myocyte number in the myocardium 

with billions of myocytes being lost within the first several days [8, 13].  These myocytes 

are not replaced and this results in extensive inflammation and fibrosis, leading to loss of 

contractility.  Fibroblasts within the damaged tissue proliferate and secrete high levels of 

collagen to prevent the heart from rupturing, ultimately leading to heart failure.  The only 

comprehensive cure for heart failure is cardiac transplant, which is greatly limited by the 

number of available donor hearts.  This has forced clinicians to find new ways to improve 

chronic cardiac function such as the use of beta-blockers, angiotensin receptor blockers, 

and other pharmacological interventions [257].  While these therapies may sustain 

cardiac function, they do little to regenerate functional tissue. 

6.2 Aim 1 

6.2.1 Summary 

In this study, a naturally-derived, porcine cardiac extracellular matrix (cECM) was 

examined for the ability to improve CPC function.  Our hypothesis was centered on the 

fact that this would mimic the matrix composition of a healthy myocardium, while 

collagen would represent both the diseased area and a commonly used cell delivery 

vehicle [77].  Our results demonstrate that CPCs prefer the naturally-derived cECM over 

collagen in vitro.  Culture of CPCs on cECM increases differentiation toward the 

cardiomyogenic lineage as shown by qPCR and western blot over collagen controls.  

Furthermore, culture of CPCs on cECM increases their proliferation rate and survival 

after serum deprivation as compared to COL.  CPCs adhere more strongly to cECM than 
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COL and show greater potential for remodeling through the expression of matrix proteins 

and matrix degrading enzymes.  These effects are believe to be tissue specific and are not 

observed when CPCs are cultured on adipose-derived ECM. 

6.2.2 Limitations 

While this work examines the specific effects of a naturally-derived cardiac ECM 

(cECM) on CPC behavior it does not recapitulate a true cardiac microenvironment for 

three reasons:  1) it is two-dimensional, 2) processing of cECM presents unnatural 

fragments to the CPCs and 3) other cell types are not present.   Each of these points will 

be addressed individually.  First, the three-dimensional microenvironment is complex and 

cells must integrate a variety of cues such as stiffness, nanotopography, biochemistry and 

soluble factor diffusion.  Due to the multiple variables present it can make studying the 

single effect of one signal difficult.  While it is possible to control for certain variable, i.e. 

stiffness, while modulating ECM composition then a single or few stiffness’s have to be 

identified for evaluation.  As discussed in the Background and Aim II, combinatorial 

design of microenvironmental signals often has complex results.  Thus, a two-

dimensional design was chosen for this first evaluation of cECM on CPC behavior in 

vitro.  However, work in mouse embryonic stem cells, showed that their differentiation 

into cardiac progenitor stem cells was improved in three-dimensional environments over 

two-dimensional cultures [86].  Two-dimensional culture limits a cell’s behavior (i.e. 

matrix degradation and compaction) and further work should be performed in three-

dimensional hydrogels or animal models [147].    

 

Next, in order to create an injectable material cECM undergoes detergent and pepsin 

processing.  Detergents may reduce growth factor and glycosaminoglycan (GAG) content 

in decellularized ECMs and potentially cause collagen degradation [182].  GAGs provide 

non-structural roles to ECM, but may play a role in cell signaling and ECM organization.  
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GAGs were detected in cECM suggesting that the detergent does not lose all of its GAG 

content.   However, it is unknown how this compares to endogenous GAG content.  

DNase treatment removes cellular material from decellularized ECMs, but may also 

reduce GAG and fibronectin content [182].  Fibronectin content is still detected in cECM 

[176].  Perhaps of larger concern is that pepsin degradation of cECM is required to 

acquire an injectable material.  Cell adhesions sites on ECM proteins like fibronectin may 

require distinct protein configurations and proximal sub-domains in the same protein 

[208].  We do not know how pepsin digests cECM components.  In vivo, peptide 

fragments may have distinct roles from whole proteins [8, 10].  That said RGD, an 

adhesive peptide from fibronectin, is commonly used as a cell adhesion site in synthetic 

hydrogel system in place of the full length protein.  Additionally, culture of CPCs on 

cECM improves their behavior over the standard culture substrate collagen I.  Thus 

cECM may not ideally mimic the native adult myocardium, but it is still an improvement 

over current culture conditions.  Further, we show that CPCs may be remodeling their 

microenvironment.  While in this study we limited our experiments to short timepoints to 

limit changes in the matrix composition, cECM may be sufficient to prime CPCs to 

create an ideal microenvironment of their own.  

 

Finally, we did not evaluate cECM as a delivery vehicle for CPCs in an animal model of 

MI.  As discussed above, the in vitro culture environment does not recapitulate the 

endogenous myocardium.  To address the third point, the endogenous myocardium 

contains myocytes, smooth muscle, endothelial cells and fibroblasts.  While these cell 

types were not the focus of this study, their behavior may also be influenced by cECM.  

Co-culture systems could be designed to evaluate how cECM alters fibroblast paracrine 

signaling (for example), which in turn could alter CPC behavior.  This is beyond the 

scope of the current work.  However, injection of CPCs with cECM into the myocardium 

would place other cell types in relevant proximity.  Thus animal studies would best 
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incorporate the effect of a three-dimensional microenvironment with co-culture and 

establish the benefits of this therapy post-MI.  While the cECM and CPCs are each 

individually in clinical trials, it is unknown whether they might provide a synergistic 

benefit to heart failure patients.  It has been suggested that the initial properties of an 

implanted biomaterial are less important than its interaction with the host tissue and its 

eventual remodeling of the material into healthy tissue [182].  The remodeling of a 

biomaterial is best evaluated in an animal model. 

 

Additionally, batch-to-batch variability may occur in decellularized matrix products.  For 

the purposes of our study, a single batch of cECM was used.  For scaling purposes, 

batches of cECM could be mixed from multiple subjects to ensure a more homogeneous 

supply before distribution.  There is also some concern in sourcing cECM from porcine 

myocardium.  However, this was concluded to be a better source than human cadaveric 

myocardium [177].  Removal of xenogeneic antigens and residual processing chemicals 

is required for biocompatibility.  In a rodent model, cECM biocompatibility was 

comparable to currently used, FDA-approved decellularized matrices sourced from other 

tissue [178].  Pre-clinical studies were performed in an allogenic model, but did not raise 

any biocompatibility concerns and the material had been largely replaced one week post-

injection [184].  Full characterization of cECM has not been performed and undefined 

components likely exist in this material.  If the material continues to prove beneficial, 

then this may not be a concern.  However, it is possible that the full material is not 

required to achieve beneficial effects.  Identification of individual signaling components, 

such as a matrix protein, proteoglycan or tethered growth factor, would allow for a more 

controlled response and perhaps more consistent processing/manufacturing of that signal 

than the entire cECM. 
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Furthermore, the identification of a stem cell population based on the presence of a single 

biological marker may results in a homogeneous and inconsistent cell population [33].  

Biological markers may change over time and after disease.  The same marker may also 

be present on different cells types.  Indeed, while all of the CPCs used in this study are 

clones that are >90% positive for c-kit, Gata-4 and Nkx2.5 there are notable differences 

between clones and their behaviors.  For example, in proliferation studies cECM 

improved the proliferation of almost all clones, however due to differences in basal 

proliferation rates the final cell count varied between experiments with different clones. 

6.2.3 Future Directions 

Paracrine signaling is a major mechanism through which cell therapy is thought to 

achieve beneficial regeneration.  Aside from qPCR results for matrix metalloproteinases, 

tissue inhibitors of matrix metalloproteinases and ECM proteins, we did not evaluate 

what the CPCs may be producing and secreting in response to culture on cECM as 

compared to COL.   Many growth factors such as vascular endothelial growth factor, 

hepatocyte growth factor, platelet-derived growth factor, stem cell factor, insulin-like 

growth factor (as previously discussed in this work), among others play roles in cell 

recruitment, maturation and even neoangiogenesis.  While less relevant in a two-

dimensional environment, they would be active in cell therapy attempts.  ELISAs could 

be performed to assess the concentration of each of these growth factors in conditioned 

media from CPCs cultured on cECM as compared to COL.  Additionally, the same 

conditioned media could be used in migration assays to evaluate cell recruitment or for 

culture of adult myocytes or fibroblast to evaluate its effect on contractility and 

differentiation, respectively.  Functional assays with conditioned media are important as 

we are only able to probe for a small number of growth factors in the conditioned media. 
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As discussed in the limitations section of this aim, two-dimensional culture does not 

recapitulate the cell microenvironment.  As we have now shown that cECM improves 

CPC behavior over COL, it would be worth evaluating these effects in three-dimensional 

hydrogels.  For this, cECM can form soft hydrogels at high concentrations (6mg/mL) or 

alternatively, poly-(ethylene glycol)-cECM hybrid hydrogels as described by Grover et 

al. could be utilized [183].  Hybrid hydrogels would allow for tunable stiffness without 

changing ECM composition.  Similar endpoints should be evaluated in this study as 

compared to Aim 1: proliferation, survival, differentiation and paracrine signaling.   

Hybrid hydrogels could be compared to poly-(ethylene glycol)-RGD (fibronectin 

adhesion peptide) or GFOGER (collagen adhesion peptide) as a control.  Hydrogels could 

be fixed and sectioned or viewed by confocal microscopy to assess proliferation (Ki67), 

survival (TUNEL) and differentiation (lineage markers).  Conditioned media would need 

to be collected from the hydrogels for ELISA to evaluate the presence of growth factors. 

 

A rat model of MI would allow for insight into cECM delivery of CPCs for cell therapy.  

Animals would undergo ischemia-reperfusion by ligation of the coronary artery for 20 

minutes before restoration of blood flow.  Following reperfusion, treatments (saline, 

cECM alone, CPCs alone, CPCs mixed with cECM) would be administered to the border 

zone through intramyocardial injection.  Additionally, a group could be included for 

CPCs preconditioned by 48 hours of culture on cECM to evaluate preconditioning as a 

potential therapy.  Functional cardiac assessment would be determined by 

echocardiography and invasive hemodynamics.  To determine retention, CPCs would be 

labeled with a lipophilic tracer or virally transduced to express luciferase before injection.  

Fibrosis would be evaluated through Pico Sirius red staining of tissue sections.  

Immunohistochemistry would be used to evaluate vascularization.  Engraftment could be 

determined through sex mismatching and immunocytochemistry.  These studies could 

also be used to determine the lineage fate of engrafted CPCs. 
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6.3 Aim 2 

6.3.1 Summary 

The myocardial microenvironment is dynamic in development and disease states with 

changes in protein composition and mechanical strain.  In cell therapy applications 

successful transplantation of cells requires survival, engraftment, paracrine signaling, 

differentiation and maturation of transplanted cells.  Each of these endpoints may be 

affected by mechanical stimulation, motivating the study of mechanical strain on CPCs in 

vitro.  Specifically, this study evaluates the matrix-dependent effects of mechanical strain 

on CPC behavior.  Bioflex plates were functionalized with either poly-L-lysine (PLL), 

laminin (LN), fibronectin (FN), collagen I (COL) or cECM, seeded with CPCs and 

cyclically strained for 24 hours at 1 Hz and strain magnitudes of 0, 5, 10 or 15%.  These 

conditions mimic the niche of endogenous CPCs (LN, 5 and 15%), physiological (COL, 

FN, cECM, 15%), pathophysiological (COL, FN, 5%) and therapeutic (cECM, 5%) 

conditions of the myocardium.  The response of CPCs to signals from the 

microenvironment is complex, with more matrix-dependency observed at lower strains.  

Alignment, cell division and paracrine signaling are extracellular matrix and strain 

dependent.  Extracellular matrix conditions affect CPC maturation and calcium signaling. 

Mechanotransduction pathways, including focal adhesion kinase are activated through 

adhesion and maintained under cyclic strain.  In summary, this work demonstrates that 

fine control of the cardiac microenvironment is necessary for cardiac regeneration. 

6.3.2 Limitations 

While the results of Aim 1 and Aim 2 cannot be compared due to differences in matrix 

coatings and the stiffness of the underlying substrate, many of the same limitations from 

Aim 1 apply to Aim 2. In Aim 2, cECM and CPCs are used and carry the same critiques 

as described above.  However, in Aim 2 a more complex combinatorial approach is taken 

to mimicking various microenvironments in the myocardium.  This addresses a general 
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limitation of Aim 1, but still does not fully recapitulate endogenous microenvironments.  

Limitations to Aim 2 that will be addressed below include:  1) the two-dimensional 

culture, 2) presentation of ECM proteins, 3) in vitro application of mechanical strain, and 

4) complexity of mechanotransduction. 

 

As reviewed elsewhere, in vivo the ECM plays multiple roles by surrounding and 

orienting cells, allowing for transfer of mechanical forces, preventing over stretching of 

cells and providing mechanical support to the tissue [12, 15].  In addition to the 

limitations of two-dimensional culture discussed in Aim 1, the application of mechanical 

strain in Aim 2 does not permit the ECM to play its roles of force transmission and 

mechanical support as observed in vivo.  Instead of a complex network, strain is 

transferred through what are likely single protein attachments to the underlying substrate.  

This is discussed further below.  As discussed in the Aim1 limitations, multiple cell types 

are present in the myocardium.  Fibroblasts are particularly influenced by strain and 

increase the secretion of matrix proteins, matrix metalloproteinases and cytokine and 

growth factor production in response to mechanical strain [258].  Thus the endogenous 

microenvironment is dynamic and would be influenced by the presence of other cell 

types.  Mechanical loading of injected materials or the interaction of these materials with 

increased matrix metalloproteinases with strain application would affect their degradation 

in vivo [182].  Furthermore the three-dimensional environment would impose different 

passive stresses on cultured cells than the two-dimensional environments.  In other 

cardiac progenitors, differentiation and maturation of the cells is dependent on stiffness 

[159].  Strain transmission through a three-dimensional hydrogel would be mediated by 

stiffness. 

 

While we examined 20 different culture conditions, these do not fully span the possible 

microenvironments of the myocardium.  For example, we did not evaluate elastin or 
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collagen IV as matrix conditions.  Elastin is present in the myocardium and collagen IV 

has been suggested to exist in cardiac niches.  It would have also been interesting to 

evaluate ECM obtained from an infarcted myocardium.  In order to assess the effect of 

each matrix component in its purest form, single matrix proteins were used as culture 

conditions.  Endogenously, the ratio of matrix proteins is likely to be as important as any 

single matrix component.  While the cECM partially addresses this complexity, it is a 

single snapshot of the myocardial matrix as a whole.  Endogenous ECM is heterogeneous 

and anisotropic [146].  We do not control for nanotopography differences in our matrix 

coatings and assume uniform coating across the entire plate by covalently attaching the 

matrix proteins.  We do not know if or how the matrix proteins associate with each other 

in this format.  Work by others has shown that the perceived stiffness of a peptide 

increases with the number of anchoring points and that this local stiffness is more 

relevant to cells than the bulk stiffness of a material [259].  Furthermore, we controlled 

protein content across all matrix conditions based on weight alone.  Laminin is about 

twice as large as fibronectin and collagen I, so fewer laminin protein molecules were 

likely included.  However, laminin has more known cell adhesive sites in its trimeric 

form than fibronectin or collagen, potentially compensating for the presence of fewer 

proteins.  This would undoubtedly change the ligand density though.  Finally, because the 

surfaces are quenched after functionalization and short time points are used in culture, we 

make the assumption that the covalently-attached matrix is the only matrix present.  

However, we do not know if the CPCs are secreting matrix and if so, if the newly formed 

matrix is soluble or can attach to the presented matrix proteins.  For example, fibronectin 

has a known collagen binding site [208].  Moreover, we do not evaluate if the CPCs are 

remodeling their environment in this time period through the secretion of matrix 

metalloproteinases. 
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Endogenous strain is biaxial, anisotropic and heterogeneous [47].  Furthermore, cells are 

heterogeneous [114].  We apply a biaxial strain that is non-uniform across the culture 

dish as it is isotropic in the center of the well and anisotropic at the edges of the well.  

Thus the cell response is likely heterogeneous, but we largely consider the cell population 

as a whole.  A uniaxial tension system is available by Flexcell, but even these do not fully 

represent the strain endogenously experienced by cells in a three-dimensional matrix.  

Moreover, we and others have shown that cultured cells orient perpendicular to an 

applied strain compared to endogenous cells that are oriented parallel to the strain and are 

actually responsible for strain generation.  This may affect how cells interpret an applied 

strain [119].  Micropatterning the PDMS to align cells in the direction of strain may help 

to better mimic endogenous strain.  We have chosen to evaluate cyclic strain magnitude 

instead of stress as our biomechanical stimuli, even though changes in both are observed 

post-MI.  In the Bioflex system, stress and strain are proportional, whereas in the 

myocardium they are inversely proportional.  However, it is easier to estimate cell strain 

than cell stress in the Bioflex system and endogenous biomechanics reflect the tissue as a 

whole and not necessarily what the cell experiences.  While they should be consistent 

across all matrix conditions, it is worth noting that we do not know what fluid shear 

stresses are applied to cultured cells by the culture media at increasing strain magnitudes.  

Finally, we assess only one frequency (1 Hz) of cyclic strain.  This mimics the beating 

frequency of the adult human heart.  Strains specific to the rat heart or that better mimic 

the developing myocardium would be relevant to examine. For example, cardiomyogenic 

gene expression in mouse embryonic stem cells was strain dependent [260]. 

 

As previously discussed, mechanotransduction is a complicated process.  It is 

bidirectional and integrates many types of signals into an ultimate cell behavior.  We 

evaluate FAK and ERK activation as an assessment of mechanotransduction, but these 

signaling kinases are involved in multiple downstream transmission pathways.  While 
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FAK activation is generally linked to integrin signaling, ERK activation can occur 

through integrin and growth factor pathways.  To more specifically evaluate 

mechanotransduction pathways, integrin signaling can be disrupted by knocking down 

specific alpha subunits with short interfering RNA or activity can be blocked with non-

specific echistatin or integrin specific blocking antibodies [261].  Similarly, FAK 

activation could be blocked with short interfering RNA or expression of the dominant-

negative FAK known as FRNK [125].  To evaluate the role of the cytoskeleton in 

mechanotransduction in CPCs, the cells could be treated with cytochalasin D to prevent 

actin polymerization or with blebbistatin to inhibit myosin. 

 

In addition to the above limitations, smaller gaps in the experimental methods of Aim 2 

remain.  While we measure cell spread area, we do not asses the height (or total volume) 

of the cells.  This could potentially play a role in how the cells experience fluid shear 

stress.  We count the number of dividing cells and cells with more than one nucleus based 

on general immunocytochemistry.  To confirm our results and more conclusively show 

separate cell division and binucleation events a four color stain by immunocytochemistry 

is necessary: DAPI (total nuclei), Ki67 or aurora b kinase(dividing nuclei), alpha-actinin 

or tubulin (cytoskeleton/cleavage furrow) and non-muscle myosin II or septin (contractile 

ring) [168, 262].  A dividing cell would have a dividing nucleus, cleavage furrow and 

contractile ring.  A recently binucleated cell would be positive for a diving nucleus, with 

a consistent cytoplasm and absence of a contractile ring indicating karyokinesis without 

cytokinesis.  Finally, due to the limitations of our microscope we were unable to evaluate 

calcium oscillations in strained CPCs.  We plan to evaluate calcium handling protein 

expression in strained CPCs.  For calcium oscillation measurements that were taken, we 

did not distinguish between nuclear and cytoplasmic calcium, nor did we quantify the 

average amplitude and duration of oscillations. 
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6.3.3 Future Directions 

An innumerable number of culture conditions could be evaluated to asses CPC behavior.  

Instead of adding to this complexity, it would be more impactful at this juncture to 

evaluate direct questions regarding mechanotransduction in CPCs.  Specific knockdown 

of integrin subunits or intracellular signaling proteins such as focal adhesion kinase or 

proteins involved in the linker of nucleoskeleton and cytoskeleton (LINC) complex 

would elucidate the roles of these pathways.  We observed differential activation of focal 

adhesion kinase and the extracellular signal-regulated kinase, suggesting that they receive 

input from different upstream signaling events.  Overlap between these signaling 

cascades should be teased apart to determine the influence of different signaling 

components such as growth factors and extracellular matrix proteins.  This may help to 

identify the common denominator or simplest effective signaling moiety.  Such studies 

may lead to new targets for drug therapy that could potentially be used to activate 

endogenous progenitor cells. 

 

However, complex microenvironments may be necessary to activate CPCs.  Moving 

forward, in order to more definitively determine the effect of various strains, focus should 

be placed on a single (or minimal number of) matrix protein(s).  To limit the number of 

matrix conditions, preliminary work on multiple matrices could be performed to screen 

for a desired outcome (i.e. troponin expression).  Then further work evaluating other 

endpoints could be performed on the matrix that induced the least and greatest troponin 

expression.  This would then allow the investigator to evaluate multiple strain frequencies 

or multiple strain magnitudes in three-dimensional cultures.  Although not considered in 

this dissertation, electrical stimulation induces stem cell maturation [263].  It may be 

possible to achieve the same effects by biochemically stimulating calcium signaling in 

CPCs (i.e. through ATP) or mechanically activating calcium channels in CPCs in three-

dimensional cyclic-strain cultures.   
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Progenitor cell therapy may not prove to be the most effective treatment for MI.  In 

adults, the autologous cell sourcing yields older, less regenerative CPCs and sourcing 

from younger tissue has its own hurdles in autologous CPC cryopreservation or 

limitations of allogenic sources.  Infusion of stem/progenitor cells may not be necessary 

for regeneration [34].  Work in our laboratory has shown that the secretome of CPCs may 

be powerful enough to induce regeneration post-MI [264].  While not fully characterized, 

it is worth investigating as it may provide an off-the-shelf therapy. 
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APPENDIX 

A.1. Methods and Supplemental Results 

A.1.1. Cardiac Progenitor Cell Isolation 

CPCs were isolated from adult male Sprague-Dawley rats (about 250g) by removing the 

heart and homogenizing the tissue, as approved by Emory University’s Institute Animal 

Care and Use Committee.  The tissue homogenate was further digested with type-2 

collagenase (1 mg/mL in Hank’s Balanced Salt Solution (HBSS); Worthington 

Biochemical) and passed through a 70 m filter.  Cells were then incubated with 

Dynabeads (Dynal) conjugated to a c-kit antibody (Santa Cruz H-300) prior to magnetic 

sorting.  Sorted cells were plated on a T-75 tissue culture flask and expanded to 

confluence.  Following isolation, CPCs were characterized by flow cytometric analysis of 

c-kit (Santa Cruz H-300), multi-drug resistance protein (MDR; Santa Cruz H-241), Gata-

4 (Santa Cruz H-112) and Nkx2.5 (Santa Cruz H-114).  Only clones with >90% c-kit 

expression were used for subsequent studies.  Figure 39 shows representative flow 

cytometry histograms for c-kit, MDR, Gata-4, and Nxk2.5. 
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Figure 39.  CPC Characterization. CPC clones were assessed by flow cytometry for stem 

cell markers c-kit (A) and MDR (D) as well as cardiomyogenic markers Nkx2.5 (B) and 

Gata-4 (C). Lighter histograms represent negative control. 

A.1.2. Decellularized cardiac extracellular matrix (cECM) generation 

Decellularized porcine ventricular extracellular matrix was obtained and processed into a 

cell culture coating as previously described [175, 176]. Briefly, porcine ventricular tissue 

was isolated and cut into small rectangular pieces, rinsed in phosphate buffered saline 

(PBS, Fisher), and decellularized using 1% sodium dodecyl sulfate (SDS, Fisher) for 4-5 

days.  The decellularized cECM was then rinsed with Triton X-100 (Integra Chemical 

Company) for 30 minutes, DI water overnight, frozen at -80°C overnight, lyophilized 
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(Labconco) overnight, and milled into a fine powder.  The powder was digested using 

pepsin at 1 mg/ml in 0.1M HCl (Fisher) for at least 54 hours prior to use, as modified 

from a previously published protocol, at a ratio of 10:1 of ECM matrix to pepsin.  The 

material was then raised to a basic pH by adding 1 M NaOH (Fisher), and brought to a 

salt concentration of 1X PBS through the addition of 10X PBS. Then, the material was 

brought to physiological pH of 7.4 using HCl and NaOH, and diluted to 6 mg/ml using 

1X PBS. The cECM was then frozen at -80°C overnight, lyophilized for 24 hours 

(Labconco) and stored at -80°C prior to use. 

A.1.3. Cell Culture  

Matrix solutions were made by reconstituting cECM in sterile water and then diluting to 

1 mg/mL in 100 mM acetic acid. Collagen I (COL; rat tail, Invitrogen) was diluted to 1 

mg/ml in 100 mM acetic acid.  Tissue culture plastic plates were coated with cECM or 

COL and incubated for 1 hour at 37°C to allow adsorption.  Coated plates were then 

washed twice with 1x PBS to remove acetic acid.  CPCs were seeded on top of the coated 

plates and incubated in the appropriate medium for the desired timepoints (see 

subsequent methods sections for details specific to each experiment). 

A.1.4. RNA and protein isolation  

Cell culture was performed as described above in 6-well tissue culture plastic plates 

coated with 500 l of the appropriate matrix.  Two wells were prepared for each 

condition with 5 x10
5
 cells per well.  Cells were cultured in treatment media (Ham’s F-12 

(Mediatech) + 0.1 g/mL bFGF (Sigma) + 1x ITS (Cellgro) + 1x Penicillin-

Streptomycin-Glutamine (P/S/G, Cellgro)) and media was exchanged every 48 hours.  

Cells were harvested 2 and 7 days following plating with Trizol (Invitrogen) for isolation 

of RNA and protein.  The Trizol solution was frozen at -80°C until RNA isolation was 
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performed.  RNA and protein extraction were performed according to the manufacturer’s 

protocol.  Samples were stored at -20°C.  

A.1.5. Reverse transcription and quantitative real-time PCR  

RNA quantification and purity was determined by absorbance readings at 260 and 280 

nm by a BioTek Synergy2 Spectrophotometer.  Reverse transcription was performed with 

M-MLV (Invitrogen) as follows.  Samples were prepared with 2 g RNA and 0.1 g 

hexamers (Thermo Scientific), 0.1 g oligo dTs (Fermentas), 25 nmol dNTPS 

(Fermentas) and RNase free water for a final volume of 12 L.  No-template controls 

were performed by replacing RNA content with RNase free water.  Samples were heated 

at 65°C for 5 minutes to denature the RNA, followed by 25°C for 10 minutes to allow 

hexamers and oligos to anneal.  First strand buffer (1x final concentration, Invitrogen), 

0.2 mol DTT (Invitrogen), 40 units RNaseOUT Inhibitor (Invitrogen) and 200 units M-

MLV (Invitrogen) were added to each sample.  Samples were heated at 37°C for 60 

minutes for reverse transcription, followed by 70°C for 15 minutes to inactivate the 

enzyme. cDNA products were stored at -20°C. 
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Figure 40. qPCR Results. CPCs were seeded on the appropriate matrix for 6 hours and 

then cyclic strain was applied for 24 hours.  Cells were harvested by trizol and cDNA 

quantified by qPCR. Cnx43 (top), ITGb1 (middle), VEGFa (bottom); Two-way ANOVA, 

bars represent mean + SEM; n=2-5; Cnx43 = connexin 43, ITGb1 = integrin beta1, 
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VEGFa = vascular endothelial growth factor A, PLL = poly-l-lysine, LN = laminin, COL 

= collagen I, FN = fibronectin, cECM = naturally-derived cardiac extracellular matrix. 

 

Gene expression was measured by quantitative real-time PCR on an Applied Biosystems 

StepOne Plus Real-Time PCR System.  Reaction mixtures contained 7.5 L Power 

SYBR Green (Invitrogen), 5.1 L RNase free water (Hyclone), 1.4 L of the appropriate 

primer at 1M (IDT) and 1 L 1:5 cDNA (total volume = 15 L).  The running protocol 

was 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 60 

seconds, for all SYBR Green Primers.  A melt-curve was calculated at 2°C intervals with 

the same cycling conditions.  Each sample was run in duplicate.  A Taqman gene 

expression assay was performed to quantify GAPDH expression (Applied Biosystems; 

50°C for 2 minutes, 95°C for 10 minutes and then 40 cycles of 95°C for 15 seconds 

followed by 60°C for 1 minute).  Results are normalized to GAPDH and expressed as 

fold change for cECM relative to COL (ΔΔCt).  Primer sequences are listed in Table 1. 

For array studies, cDNA from 3 separate studies was pooled to a total of 1 g per plate.  

Extracellular matrix and adhesion molecule gene array plates were purchased from 

Qiagen (SABiosciences) and gene levels were normalized to beta-actin housekeeping 

gene.  Data were compared using the log∆∆Ct to plot COL vs. cECM and changes ± 2.5-

fold were considered significantly up- or downregulated. 
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Table 1: List of Primers 

Name Forward 5’-3’ 

Reverse 5’-3’ 

Lineage Aim of 

Study 

α-Myosin Heavy 

Chain (α-mhc) 

F: AACGCCCAAGCCCACTTGAA 

R: CATTGGCACGGACTGCGTCA 

cardiomyocyte 1 

troponinT2 (tropT) F: AAGGCCAAAGTCACCGGGCG 

R: TCGGGTGCCTGGCAAGACCT 

cardiomyocyte 1 

troponinC1 (tropC) F: GATCTCTTCCGCATGTTTGACA 

R: TGGCCTGCAGCATCATCTT 

cardiomyocyte 1 

gata-4 F: ACCTGCTACAGCAGGGTTGGT 

R: TCTAGCACAACTGCAAGCATGGC 

early 

cardiomyocyte 

1 

nkx2.5 F: CAAGTGCTCTCCTGCTTTCC 

R: GGCTTTGTCCAGCTCCACT 

early 

cardiomyocyte 

1 

smooth muscle (sm) 

α-actin  

F: CCCAGATTCAGGAACAGCAT 

R: GTTAGCAAGGTCGGATGCTC 

smooth muscle 1 

smooth muscle (sm) 

22α 

F: AGCCAGTGAAGGTGCCTGAGAAC 

R: TGCCCAAAGCCATTAGAGTCCTC 

smooth muscle 1 

fibroblast specific 

protein 1 (fsp) 

F: GAGGAGGCCCTGGATGTAAT 

R: CTTCATTGTCCCTGTTGCTG 

fibroblast 1 

von Willebrand 

Factor (vwf) 

F: CCCACCGGATGGCTAGGTATT 

R: GAGGCGGATCTGTTTGAGGTT 

endothelial 1 

tie2 F: TGCCACCATCACTCAATACCA 

R: AGGCTGGGTTGCTTGATCCT 

endothelial 1 

 
*primers were redisgned in Aim 2 to allow for purifacation of standards for standard curves 

 
troponinC1 (tnnc1) F: GTAGACGAGGATGGCAGTGG 

R: ATGCGGAAGAGATCCGACAG 

cardiomyocyte 2 

troponinT2 (tnnT2) F: CCAAGGAGCTATGGCAGAGT 

R: CTTTGGCCTTCCCACGAGTT 

cardiomyocyte 2 
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Table 1 Continued: List of Primers 

Name Forward 5’-3’ 

Reverse 5’-3’ 

Lineage Aim of 

Study 

nkx2.5 F: GCACCATGCGGGAAGGCTAT 

R: GACTGAGAAGGGCGTGTGTG 

early 

cardiomyocyte 

2 

gata-4 F: ACCTGCTACAGCAGGGTTGGT 

R: TTCTAGCACAACTGCAAGCATGGC 

early 

cardiomyocyte 

2 

connexin 43 (Cnx43) F: TCAGCCTCCAAGGAGTTCCA 

R: CTAAGCCAAAGACGCAACGC 

cardiomyocyte 2 

integrin beta1 

(ITGb1) 

F: TCACCTACTCAGTGAACAGCAA 

R: ACGCCTGCTACAATTGGGAT 

 2 

vascular endothelial 

growth factor A 

(VEGF) 

F: GATAGAGTATATCTTCAAGCCG 

R: CTCATCTCTCCTATGTGCTG 

endothelial 2 

18s F: TTCCTTACCTGGTTGATCCTGCCA 

R: AGCGAGCGACCAAAGGAACCATAA 

housekeeping gene 2 

 

A.1.6. Western blot  

Protein quantification was performed by microBCA (Thermo Scientific) according to the 

manufacturer’s protocol.  Samples were prepared by adding 30 g protein to appropriate 

amounts of 5x Laemmli buffer and water to yield a final volume of 25 L and then boiled 

for 8 minutes at 95°C.   Each sample was then loaded on 12% SDS-PAGE gel.  

NovexSharp (Invitrogen) protein ladder was loaded at 15 L.  Electrophoresis was 

performed and gels were transferred to a nitrocellulose membrane.  Membranes were 

immediately blocked with 5% milk in Tris-buffered saline with 1% Tween-20 (TBS-T) 

overnight at 4°C.  Membranes were washed 3 times in 1x TBS-T, then immersed in a 

1:1000 primary antibody (Table 2). All antibody solutions, except those from Cell 

Signaling, were made in 5% milk in 1x TBS-T and incubated with membranes overnight 



www.manaraa.com

 131 

at 4°C prior to 3 washes with 1x TBS-T.  Cell Signaling antibodies were diluted in 

bovine serum albumin.  Membranes were incubated at room temperature for 1 hour in 

1:5000 secondary antibody.  For all cases, the secondary antibody was HRP-conjugated 

goat anti-rabbit or goat anti-mouse (Bio-rad).  Membranes were exposed on film or 

Kodak imager and results were quantified with ImageJ and are expressed as fold change 

for cECM/COL. 
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Table 2: List of Antibodies and Stains 

Antibody Supplier Catalog # Host 

c-kit (H-300) Santa Cruz Biotechnology sc-5535 Rabbit 

Gata-4 Santa Cruz Biotechnology sc-9053 Rabbit 

Nkx2.5 Santa Cruz Biotechnology sc-14033 Rabbit 

HUTS-4  

(active integrin beta1) 

Millipore MAB2079Z Mouse 

Integrin beta1 Santa Cruz Biotechnology sc-8978 Rabbit 

pFAK Cell Signaling 8556P Rabbit 

FAK Cell Signaling 3285S Rabbit 

pERK Cell Signaling 9101S Rabbit 

ERK Cell Signaling 9102S Rabbit 

Connexin 43 Sigma C8093 Mouse 

GAPDH Santa Cruz Biotechnology sc-25778 Rabbit 

Stain Supplier Catalog #  

DAPI Invitrogen D1306  

Rhodamine-Phalloidin Invitrogen R415  

Fluorescein 5-maleimide Sigma 38132  
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A.1.7. Determination of proliferation  

Cell culture plates were prepared as described above with 125 L of the appropriate 

matrix per well of a 24-well plate.  CPCs were seeded at a density of 2000 cells per well 

to allow growth, while removing the possibility of contact inhibition [Hadjipanayi 2009].  

The cells were incubated in serum-rich treatment medium (Ham’s F-12 (Mediatech) + 

10% FBS (Hyclone) + 0.1 g/mL bFGF (Sigma) + 1x ITS (Cellgro) + 1x P/S/G 

(Cellgro)).  Following 48 hour incubation, the medium was discarded and the cells were 

lifted from culture plates with TrypLE Express (Invitrogen). The cell solution was diluted 

1:100 in Isoton II (Beckman Coulter) and cells were immediately counted in triplicate in 

a Coulter Counter.  Results are expressed as fold change in cell number as final 

count/initial seed number. 

A.1.8. Microfluidic adhesion assay  

Individual channels of the microfluidic devices [265] were filled simultaneously with 

protein solutions of interest, including collagen I (Invitrogen, rat tail), cECM, fibronectin 

(BD Biosciences, human) and laminin (BD Biosciences, mouse) at 10 g/mL. Devices 

were then incubated for 3 hours at 37°C; the channels were rinsed with PBS and blocked 

with 2% BSA for 0.5 hours at 37°C. CPCs were then seeded at 1x10
6
 cells/mL in growth 

media (Ham’s F-12 (Mediatech) + 0.1 g/mL bFGF (Sigma) + 10% FBS (Hyclone) + 1x 

P/S/G (Cellgro) and allowed to adhere for 3 hours at 37°C, and then subjected to step-

wise increments of shear stresses from 0 to ~470 dynes/cm
2
 for 12 minutes. Results are 

reported as the fraction of adherent cells over time normalized to starting cell number. 

A.1.9. Annexin V staining 

Cell culture plates were prepared as described above with 125 L of the appropriate 

matrix per well of a 24-well plate.  CPCs were seeded at a density of 50,000 cells per 
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well, in triplicate. Cells were cultured in serum-free media (Ham’s F-12 (Mediatech) + 1x 

P/S/G (Cellgro)).  Cells that were not serum-deprived were stained with AnnexinV Alexa 

Fluor® 647 (Invitrogen) as a negative control.  After 12 hour incubation, media from 

each well was collected and TrypLE Express (Invitrogen) was added to lift the cells from 

the well.  The lifted cells were added to the respective collected media.  Cells were 

centrifuged at >1500 rpm for 5 minutes.  The supernatant was removed and the cells were 

washed with cold 1x PBS.  After centrifugation at >1500 rpm for 5 minutes, the 

supernatant was again removed and the cells were resuspended in 50 L of Annexin 

binding buffer.  The cell solution was then incubated with 5 L of AnnexinV Alexa 

Fluor® 647 (Invitrogen) at room temperature for 15 minutes.  After incubation, 400 L 

of Annexin binding buffer was added and samples were mixed gently and kept on ice.  

Cells were analyzed immediately by flow cytometry. 

A.1.10.  Silanization of Bioflex Plates 

Working in a fume hood, 2 mL of 1.0 M NaOH (Sigma) was added to each well of a 6-

well Bioflex plate (Flexcell International) and incubated for 1 hour at room temperature.  

Following incubation, plates were washed in ddH2O for five minutes, three times.  With 

the lids on, each well was treated with 1 mL of 4% (v/v) aminopropyltriethoxysilane 

(APTES; Sigma) in acetone for 10 minutes at room temperature.  Plates were washed 

three times, treated with 2 mL 0.5% glutaraldehyde (Sigma) in ddH2O at room 

temperature for 30 minutes and then washed three times again.  Matrix proteins were 

diluted to 100 g/mL, with 1 mL for each well, as follows: naturally-derived cardiac 

extracellular matrix (cECM; porcine) in 100 mM acetic acid, collagen I (COL; rat tail, 

Invitrogen) in 100 mM acetic acid, fibronectin (FN; human, BD Bioscience) in 1X PBS, 

laminin (LN; mouse, BD Bioscience) in 1X PBS and poly-L-lysine (Sigma) in ddH2O.  

Matrix proteins were added to the appropriate wells and plates were incubated for 1 hour 

at 37 °C.  Plates were then washed once for 5 minutes in 1X PBS and treated with 1 mL 
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of 1 M ethanolamine (Sigma) in ddH2O (pH 7.0) for 20 min to quench unreacted 

gluteraldehyde.  Plates were washed three times with 1X PBS and stored dry at 4°C.  To 

sterilize, plates were kept under ultraviolet light for 1 hour prior to use.  Functionalization 

with glutaraldehyde is demonstrated by auto-fluorescence in Figure 41. 

 

Figure 41. Functionalization of Bioflex plates.  Auto-fluorescence in FITC and TRITC 

channels indicates presence of glutaraldehyde. 

A.1.11.  Application of Mechanical Tension 

CPCs were seeded at a density of 4x10
5
 cells/well on functionalized Bioflex plates and 

incubated in treatment medium (Ham’s F-12 (Mediatech) + 0.1 g/mL bFGF (Sigma) + 

1x insulin transferrin selenium (Cellgro) + 1x penicillin-streptomycin-glutamine (P/S/G, 

Cellgro)) for 6 hours prior to the application of mechanical tension.  Tensile strain was 

applied through a Flexcell 5000 (Flexcell International).  For this, Bioflex plates were 

loaded onto 25 mm cylindrical loading posts.  A cyclic sinusoidal strain regimen of 1 Hz 

and 0.5 duty cycle, with elongation magnitudes of 5, 10 or 15% was applied to the plates 

for 24 hours.   During this time, cells were maintained in 5% CO2 at 37° C.  Approximate 

stress and strain values achieved in this set-up are presented in Figure 42. 
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Figure 42. Biaxial strain in Bioflex 6-well plates. (A) Diameter of loading post (dark) and 

well (light), (B) Relationship of generated strain and estimated stress, (C) Stress and 

strain relationship of compiled data from: Colombo A (2008) Proc Inst Mech Eng H, 

222(8): 1235-45. 

To assess activation of focal adhesion kinase and extracellular signal-regulated kinase, 

CPCs were seeded as described above and allowed to adhere for 20 minutes before lysing 

with NP-40 lysis buffer.  Alternatively, cells were allowed to adhere for the full 6 hours 

and then strained for either 15 minutes or 24 hours before lysis. Lysates were incubated 

overnight at 4°C with rocking.  Lysates were spun at 10,000 x g for 5 minutes and 

supernatants used for Western blots. 

A.1.12.  Strain Transfer Video Microscopy 

Untreated StageFlexer membranes (Flexcell International) were functionalized with 

matrix proteins as described above.  For improved visualization CPCs were incubated for 

2 hours at 37° C with anti-c-kit antibody conjugated Dynabeads, with rocking.  CPCs 

were seeded at 5x10
5
 cells/membrane and incubated for 6 hours in growth media.  Seeded 

membranes were then placed in a StageFlexer (Flexcell International) attached to the 

Flexcell 5000.  A cyclic sinusoidal strain regimen of 1 Hz and 0.5 duty cycle, with 
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elongation magnitudes of 5, 10 or 15% was applied and bright field video was captured 

on an upright microscope (Amscope) with ToupView 3.7 at 20 frames per second.  To 

quantify, a single cell containing two or more beads was identified.  The distance 

between the two beads was traced in FIJI and strain was computed as the difference 

between the average maximum and minimum distances between the beads over the 

minimum distance between the beads.  This ‘measure strain’ is compared to the strain 

reported by the Flexcell 5000. 

A.1.13.  Immunocytochemistry 

After 24 hours of mechanical strain, cells were immediately fixed in 4% 

paraformaldehyde (Sigma) for 20 minutes at room temperature.  Following three washes 

in 1X PBS, the cells were permeabilized with 0.1% triton in (Sigma) 1X PBS.  Cells were 

again washed and then blocked in 3% bovine serum albumin (Sigma) for 1 hour at room 

temperature.  Cells were then stained with 10 g/mL fluoresceinyl-maleimide (Sigma) 

for 1 hour at room temperature in the absence of light, followed by washing and then 1 

g/mL DAPI (company) for 10 minutes.  Alternatively, cells were simultaneously stained 

for 125 g/mL rhodamine-phalloidin (Invitrogen) and DAPI for 20 minutes at room 

temperature in the absence of light.  Cells were washed prior to imaging.  Images were 

captured on an Olympus IX70 inverted fluorescent microscope. 

 

Cell characteristics were quantified by importing images into CellProfiler 2.1.0.  The 

images were analyzed according to the following pipeline: 1) resized by 0.25, 2) 

converted to greyscale, 3) nuclei were identified by intensity using a global threshold, 

automatic smoothing and a threshold correction factor of 1, 4) cells were identified 

around nuclei by intensity through propagation with per object Otsu thresholding, 

automatic smoothing and a threshold correction factor of 0.8, 5) cell size, shape and 

orientation were measured, 6) export to spreadsheet.  Exported data was compiled to 
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calculate cell size, spread area and alignment.  This pipeline is summarized in Figure 43.  

Alignment scores were calculated by measuring the angle between the major axis of each 

cell and the horizon, taking the standard deviation of all the angles and computing 100* 

the percent difference of the standard deviation from a Gaussian distribution or: 

100*((90/sqrt(3)-Stdev)/(90/sqrt(3)).  Circular math was employed to correct for the 

orientation of cells in orthogonal images.  

 

 

Figure 43. CellProlifer Workflow.  Images were acquired at edge of loading post.  Nuclei 

and cells were identified based on intensity.  Shape characteristics were measured. 

A.1.14. Cytoplasmic Calcium Imaging 

Coverslips were coated with 10 ug/cm
2
 of the appropriate matrix and allowed to dry.  

After UV sterilization, 200,000 CPCs were seeded onto each coverslip and cultured for 

24 hours.  Cells were loaded with 10 m Fluo-4 (Invitrogen) in 2 mM calcium Tyrode’s 

solution for 20 minutes at room temperature.  Cells were washed with 2mM calcium 

Tyrode’s before imaging on an Olympus confocal microscopes under epifluoresence.  For 

each coverslip, a video was acquired at the beginning of a 1 Hz electrical stimulation, 

showing initial calcium uptake.  Two additional videos were acquired with 1 Hz 

stimulation per coverslip.  Videos were quantified by tracing regions of interest around 

individual cells and evaluating fluorescence over time. The number of active cells with 
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calcium oscillations and the number of oscillations per active cell in the 90 second period 

were evaluated. 

 

Figure 44. Pacing CPCs. CPCs were seeded on laminin for 3 hours.  Cytoplasmic protein 

was assessed by Fluo-4 during electrical stimulation.  Pacing CPCs, though rare, were 

found for each stimulation frequency.  (A) Representative stills, region of interest is 

enclosed in white box, (B) Intensity traces from matching region of interest in A. 

A.1.15.  Cytokine ELISAs 

After 24 hours of mechanical strain, conditioned media was immediately collected from 

the wells and stored at -20° C. ELISA kits were purchased from RayBiotech for stem cell 

factor, hepatocyte growth factor, platelet-derived growth factor and vascular endothelial 
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growth factor.  Experiments were performed according to the manufacturer’s protocol.  

Briefly, diluted conditioned media or standard was added the appropriate well and 

incubated for 2.5 hours at room temperature.  Following washing, the appropriate biotin-

conjugated antibody was added to each well and incubated for 1 hour at room 

temperature.  Following washing, a horseradish peroxidase-conjugated streptavidin 

solution was added to each well and incubated for 45 minutes at room temperature.  After 

additional washing, substrate was added to each well and incubated for 30 minutes at 

room temperature.  Finally, stop solution was added to each well.  Plates were read 

immediately at 450 nm on a BioTek Synergy2 spectrophotometer.  Concentrations of 

each cytokine were calculated based on the standard curve. 

A.1.16. Statistical Analysis 

Graphpad Prism 3 or 5 software was used for all statistical analysis.  In Aim 1, student’s 

t-test with Welch’s Correction or paired t-test was performed.  P-values of less than 0.05 

were considered significant.  In Aim 2, two-way ANOVAs were performed for each data 

set to establish overall effects of matrix and strain on a given endpoint.  No post-test 

results are reported for the two-way ANOVA as we cannot compare between all relevant 

groups simultaneously.  Instead the same data was analyzed by one-way ANOVAs to 

establish specific effects of matrix or strain, except where noted.  All one-way ANOVA 

post-tests are Tukey’s multiple comparison tests allowing for the comparison of all 

groups to each other.  Ultimately, this does not allow for direct comparisons of all culture 

conditions, but does allow conclusions to be drawn regarding the effect of strain for 

CPCs cultured on a given matrix and the effect of matrix conditions for a given strain.   
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